You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

83 lines
4.3 KiB

Note that all the photon cuts specified in this section of the input file, are applied even if {\tt makecuts} is set to {\tt .false.}.
\begin{longtable}{p{3.5cm}p{12cm}}
\hline
\multicolumn{1}{c}{{\textbf{Section} \texttt{photon}}} & \multicolumn{1}{c}{{\textbf{Description}}} \\
\hline
{\tt fragmentation} & This parameter is a logical variable that determines whether the production of photons
by a parton
fragmentation process is included. If {\tt fragmentation} is set to {\tt .true.}, the code uses a standard
cone isolation
procedure (that includes LO fragmentation contributions in the NLO calculation).
If {\tt fragmentation} is set to {\tt .false.}, the code implements
a Frixione-style photon cut~\cite{Frixione:1998jh},
\begin{equation}
\sum_{i \in R_0} E_{T,i}^j < \epsilon_h E_{T}^{\gamma} \bigg(\frac{1-\cos{R_{i\gamma}}}{1-\cos{R_0}}\bigg)^{n}
\;.
\label{frixeq}
\end{equation}
In this equation, $R_0$, $\epsilon_h$ and $n$ are defined by {\tt cone\_ang}, {\tt epsilon\_h}
and {\tt n\_pow} respectively (see below).
$E_{T,i}^{j}$ is the transverse energy of a parton, $E_{T}^\gamma$ is the
transverse energy of the photon and $R$ is the separation between the photon and the parton using the
usual definition
\begin{equation}
R=\sqrt{\Delta\phi_{i\gamma}^2+\Delta\eta_{i\gamma}^2} \,.
\end{equation}
$n$ is an integer parameter which by default is set to~1. \\
{\tt fragmentation\_set} & A length eight character variable that is used to choose the particular photon
fragmentation set.
Currently implemented fragmentation functions can be called with `{\tt BFGSet\_I}', `{\tt
BFGSetII}'~\cite{Bourhis:1997yu} or `{\tt GdRG\_\_LO}'~\cite{GehrmannDeRidder:1998ba}. \\
{\tt fragmentation\_scale} & A double precision variable that will be used to choose the scale
at which the photon fragmentation is evaluated. \\
{\tt gammptmin} & This specifies the value
of $p_T^{\mathrm{min}}$ for the photon with the largest transverse momentum.
Note that this cut, together with all the photon cuts specified in this section
of the input file, are applied even if {\tt makecuts} is set to {\tt .false.}.
One can also add an entry for \texttt{gammptmax} to cut on a range. \\
{\tt gammrapmax} & This specifies the value
of $|y|^{\mathrm{max}}$ for any photons produced in the process. One can also add an entry
for \texttt{gammrapmin} to cut on a range. \\
{\tt gammpt2}, {\tt gammpt3} & The values
of $p_T^{\mathrm{min}}$ for the second and third photons, ordered by $p_T$. \\
{\tt Rgalmin} & Using the usual definition of $R$ above,
this requires that all photon-lepton pairs are separated by
$R >$~{\tt Rgalmin}. This parameter must be non-zero
for processes in which photon radiation from leptons is included. \\
{\tt Rgagamin} & Using the usual definition of $R$ above,
this requires that all photon pairs are separated by
$R >$~{\tt Rgagamin}. \\
{\tt Rgajetmin} & Using the usual definition of $R$ above,
this requires that all photon-jet pairs are separated by
$R >$~{\tt Rgajetmin}. \\
{\tt cone\_ang} & Fixes the cone size ($R_0$) for photon isolation.
This cone is used in both forms of isolation. \\
{\tt epsilon\_h} & This cut controls the amount of radiation allowed in cone when {\tt fragmentation} is set
to
{\tt .true.}. If {\tt epsilon\_h} $ < 1$ then the photon is isolated using
$\sum_{\in R_0} E_T{\mathrm{(had)}} < \epsilon_h \, p^{\gamma}_{T}.$ Otherwise {\tt epsilon\_h} $ > 1$ sets
$E_T(max)$ in $\sum_{\in R_0} E_T{\mathrm{(had)}} < E_T(max)$. \\
{\tt n\_pow} & When using the Frixione isolation prescription, the exponent $n$ in Eq.~(\ref{frixeq}). \\
{\tt fixed\_coneenergy} & This is only operational when using the Frixione isolation prescription.
If {\tt fixed\_coneenergy} is .false. then $\epsilon_h$ controls the amount of hadronic energy allowed
inside the cone using the
Frixione isolation prescription (see above, Eq.~(\ref{frixeq}))
If {\tt fixed\_coneenergy} is .true. then this formula
is replaced by one where $\epsilon_h E_T^\gamma \rightarrow \epsilon_h$. \\
{\tt hybrid}, {\tt R\_inner} & If {\tt hybrid} is set to .true. use a hybrid isolation scheme
with Frixione isolation on an inner cone of radius {\tt R\_inner}. \\
\hline
\end{longtable}