Note that all the photon cuts specified in this section of the input file, are applied even if {\tt makecuts} is set to {\tt .false.}. \begin{longtable}{p{3.5cm}p{12cm}} \hline \multicolumn{1}{c}{{\textbf{Section} \texttt{photon}}} & \multicolumn{1}{c}{{\textbf{Description}}} \\ \hline {\tt fragmentation} & This parameter is a logical variable that determines whether the production of photons by a parton fragmentation process is included. If {\tt fragmentation} is set to {\tt .true.}, the code uses a standard cone isolation procedure (that includes LO fragmentation contributions in the NLO calculation). If {\tt fragmentation} is set to {\tt .false.}, the code implements a Frixione-style photon cut~\cite{Frixione:1998jh}, \begin{equation} \sum_{i \in R_0} E_{T,i}^j < \epsilon_h E_{T}^{\gamma} \bigg(\frac{1-\cos{R_{i\gamma}}}{1-\cos{R_0}}\bigg)^{n} \;. \label{frixeq} \end{equation} In this equation, $R_0$, $\epsilon_h$ and $n$ are defined by {\tt cone\_ang}, {\tt epsilon\_h} and {\tt n\_pow} respectively (see below). $E_{T,i}^{j}$ is the transverse energy of a parton, $E_{T}^\gamma$ is the transverse energy of the photon and $R$ is the separation between the photon and the parton using the usual definition \begin{equation} R=\sqrt{\Delta\phi_{i\gamma}^2+\Delta\eta_{i\gamma}^2} \,. \end{equation} $n$ is an integer parameter which by default is set to~1. \\ {\tt fragmentation\_set} & A length eight character variable that is used to choose the particular photon fragmentation set. Currently implemented fragmentation functions can be called with `{\tt BFGSet\_I}', `{\tt BFGSetII}'~\cite{Bourhis:1997yu} or `{\tt GdRG\_\_LO}'~\cite{GehrmannDeRidder:1998ba}. \\ {\tt fragmentation\_scale} & A double precision variable that will be used to choose the scale at which the photon fragmentation is evaluated. \\ {\tt gammptmin} & This specifies the value of $p_T^{\mathrm{min}}$ for the photon with the largest transverse momentum. Note that this cut, together with all the photon cuts specified in this section of the input file, are applied even if {\tt makecuts} is set to {\tt .false.}. One can also add an entry for \texttt{gammptmax} to cut on a range. \\ {\tt gammrapmax} & This specifies the value of $|y|^{\mathrm{max}}$ for any photons produced in the process. One can also add an entry for \texttt{gammrapmin} to cut on a range. \\ {\tt gammpt2}, {\tt gammpt3} & The values of $p_T^{\mathrm{min}}$ for the second and third photons, ordered by $p_T$. \\ {\tt Rgalmin} & Using the usual definition of $R$ above, this requires that all photon-lepton pairs are separated by $R >$~{\tt Rgalmin}. This parameter must be non-zero for processes in which photon radiation from leptons is included. \\ {\tt Rgagamin} & Using the usual definition of $R$ above, this requires that all photon pairs are separated by $R >$~{\tt Rgagamin}. \\ {\tt Rgajetmin} & Using the usual definition of $R$ above, this requires that all photon-jet pairs are separated by $R >$~{\tt Rgajetmin}. \\ {\tt cone\_ang} & Fixes the cone size ($R_0$) for photon isolation. This cone is used in both forms of isolation. \\ {\tt epsilon\_h} & This cut controls the amount of radiation allowed in cone when {\tt fragmentation} is set to {\tt .true.}. If {\tt epsilon\_h} $ < 1$ then the photon is isolated using $\sum_{\in R_0} E_T{\mathrm{(had)}} < \epsilon_h \, p^{\gamma}_{T}.$ Otherwise {\tt epsilon\_h} $ > 1$ sets $E_T(max)$ in $\sum_{\in R_0} E_T{\mathrm{(had)}} < E_T(max)$. \\ {\tt n\_pow} & When using the Frixione isolation prescription, the exponent $n$ in Eq.~(\ref{frixeq}). \\ {\tt fixed\_coneenergy} & This is only operational when using the Frixione isolation prescription. If {\tt fixed\_coneenergy} is .false. then $\epsilon_h$ controls the amount of hadronic energy allowed inside the cone using the Frixione isolation prescription (see above, Eq.~(\ref{frixeq})) If {\tt fixed\_coneenergy} is .true. then this formula is replaced by one where $\epsilon_h E_T^\gamma \rightarrow \epsilon_h$. \\ {\tt hybrid}, {\tt R\_inner} & If {\tt hybrid} is set to .true. use a hybrid isolation scheme with Frixione isolation on an inner cone of radius {\tt R\_inner}. \\ \hline \end{longtable}