You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
3.0 KiB
65 lines
3.0 KiB
\begin{longtable}{p{1.5cm}p{12cm}}
|
|
\hline
|
|
\multicolumn{1}{c}{{\textbf{Section} \texttt{cuts}}} & \multicolumn{1}{c}{{\textbf{Description}}} \\
|
|
\hline
|
|
{\tt m34transmin} & For general processes, this specifies the
|
|
minimum transverse mass of particles 3 and 4,
|
|
\begin{equation}
|
|
\mbox{general}: \quad 2 p_T(3) p_T(4) \left( 1 - \frac{\vec{p_T}(3) \cdot \vec{p_T}(4)}{p_T(3) p_T(4)} \right)
|
|
> {\texttt{m34transmin}}
|
|
\end{equation}
|
|
For the $W(\to \ell \nu)\gamma$ process the role of this cut changes, to become
|
|
instead a cut on the transverse cluster mass of the $(\ell\gamma,\nu)$ system,
|
|
\begin{equation*}
|
|
W\gamma: m_T^2 = \left[ \sqrt{m_{\ell\gamma}^2 + |\vec{p_T}(\ell)+\vec{p_T}(\gamma)|^2} + p_T(\nu) \right]^2
|
|
-|\vec{p_T}(\ell)+\vec{p_T}(\gamma)+\vec{p_T}(\nu)|^2
|
|
\end{equation*}
|
|
\begin{equation}
|
|
m_T > {\texttt{m34transmin}}
|
|
\end{equation}
|
|
For the $Z\gamma$ process this parameter specifies a simple invariant mass cut,
|
|
\begin{equation}
|
|
Z\gamma: m_{Z\gamma} > {\texttt{m34transmin}}
|
|
\end{equation}
|
|
A final mode of operation applies to the $W\gamma$ process and is triggered by a negative value
|
|
of {\texttt{m34transmin}}. This allows simple access to the cut that was employed in v6.0 of the code:
|
|
\begin{equation*}
|
|
W\gamma, \mbox{obsolete}:
|
|
m_T^2 = \left[ p_T(\ell) + p_T(\gamma) + p_T(\nu) \right]^2
|
|
-|\vec{p_T}(\ell)+\vec{p_T}(\gamma)+\vec{p_T}(\nu)|^2
|
|
\end{equation*}
|
|
\begin{equation}
|
|
m_T > |{\texttt{m34transmin}}|
|
|
\end{equation}
|
|
In each case the screen output indicates the cut that is applied. \\
|
|
{\tt Rjlmin} & Using the definition of $\Delta R$ given above in Eq.\ref{DeltaRdef}),
|
|
requires that all jet-lepton pairs are separated by
|
|
$\Delta R >$~{\tt R(jet,lept)\_min}. \\
|
|
|
|
{\tt Rllmin} & When non-zero, all lepton-lepton pairs
|
|
must be separated by $\Delta R >$~{\tt R(lept,lept)\_min}. \\
|
|
|
|
{\tt delyjjmin} & This enforces a rapidity
|
|
gap between the two hardest jets $j_1$ and $j_2$, so that:
|
|
$|\eta^{j_1} - \eta^{j_2}| >$~{\tt delyjjmin}. \\
|
|
|
|
{\tt jetsopphem} & If this parameter is set to {\tt .true.},
|
|
then the two hardest jets are required to lie in opposite hemispheres,
|
|
$\eta^{j_1} \cdot \eta^{j_2} < 0$. \\
|
|
|
|
{\tt lbjscheme} & This integer parameter provides no
|
|
additional cuts when it takes the value {\tt 0}. When equal to
|
|
{\tt 1} or {\tt 2}, leptons are required to lie between the two
|
|
hardest jets. With the ordering $\eta^{j_-} < \eta^{j_+}$ for the
|
|
rapidities of jets $j_1$ and $j_2$:
|
|
{\tt lbjscheme = 1} :
|
|
$\eta^{j_-} < \eta^{\mathrm{leptons}} < \eta^{j_+}$;
|
|
{\tt lbjscheme = 2} :
|
|
$\eta^{j_-}+$~{\tt Rcutjet}~$< \eta^{\mathrm{leptons}} < \eta^{j_+}-$~{\tt Rcutjet}. \\
|
|
|
|
{\tt ptbjetmin, etabjetmax} & If a process involving $b$-quarks is being calculated, then these can
|
|
be used to specify {\em stricter} values of $p_T^{\mathrm{min}}$
|
|
and $|\eta|^{\mathrm{max}}$ for $b$-jets. Similarly, values for \texttt{ptbjetmax} and \texttt{etabjetmin} can be
|
|
specified. \\
|
|
\hline
|
|
\end{longtable}
|