\begin{longtable}{p{1.5cm}p{12cm}} \hline \multicolumn{1}{c}{{\textbf{Section} \texttt{cuts}}} & \multicolumn{1}{c}{{\textbf{Description}}} \\ \hline {\tt m34transmin} & For general processes, this specifies the minimum transverse mass of particles 3 and 4, \begin{equation} \mbox{general}: \quad 2 p_T(3) p_T(4) \left( 1 - \frac{\vec{p_T}(3) \cdot \vec{p_T}(4)}{p_T(3) p_T(4)} \right) > {\texttt{m34transmin}} \end{equation} For the $W(\to \ell \nu)\gamma$ process the role of this cut changes, to become instead a cut on the transverse cluster mass of the $(\ell\gamma,\nu)$ system, \begin{equation*} W\gamma: m_T^2 = \left[ \sqrt{m_{\ell\gamma}^2 + |\vec{p_T}(\ell)+\vec{p_T}(\gamma)|^2} + p_T(\nu) \right]^2 -|\vec{p_T}(\ell)+\vec{p_T}(\gamma)+\vec{p_T}(\nu)|^2 \end{equation*} \begin{equation} m_T > {\texttt{m34transmin}} \end{equation} For the $Z\gamma$ process this parameter specifies a simple invariant mass cut, \begin{equation} Z\gamma: m_{Z\gamma} > {\texttt{m34transmin}} \end{equation} A final mode of operation applies to the $W\gamma$ process and is triggered by a negative value of {\texttt{m34transmin}}. This allows simple access to the cut that was employed in v6.0 of the code: \begin{equation*} W\gamma, \mbox{obsolete}: m_T^2 = \left[ p_T(\ell) + p_T(\gamma) + p_T(\nu) \right]^2 -|\vec{p_T}(\ell)+\vec{p_T}(\gamma)+\vec{p_T}(\nu)|^2 \end{equation*} \begin{equation} m_T > |{\texttt{m34transmin}}| \end{equation} In each case the screen output indicates the cut that is applied. \\ {\tt Rjlmin} & Using the definition of $\Delta R$ given above in Eq.\ref{DeltaRdef}), requires that all jet-lepton pairs are separated by $\Delta R >$~{\tt R(jet,lept)\_min}. \\ {\tt Rllmin} & When non-zero, all lepton-lepton pairs must be separated by $\Delta R >$~{\tt R(lept,lept)\_min}. \\ {\tt delyjjmin} & This enforces a rapidity gap between the two hardest jets $j_1$ and $j_2$, so that: $|\eta^{j_1} - \eta^{j_2}| >$~{\tt delyjjmin}. \\ {\tt jetsopphem} & If this parameter is set to {\tt .true.}, then the two hardest jets are required to lie in opposite hemispheres, $\eta^{j_1} \cdot \eta^{j_2} < 0$. \\ {\tt lbjscheme} & This integer parameter provides no additional cuts when it takes the value {\tt 0}. When equal to {\tt 1} or {\tt 2}, leptons are required to lie between the two hardest jets. With the ordering $\eta^{j_-} < \eta^{j_+}$ for the rapidities of jets $j_1$ and $j_2$: {\tt lbjscheme = 1} : $\eta^{j_-} < \eta^{\mathrm{leptons}} < \eta^{j_+}$; {\tt lbjscheme = 2} : $\eta^{j_-}+$~{\tt Rcutjet}~$< \eta^{\mathrm{leptons}} < \eta^{j_+}-$~{\tt Rcutjet}. \\ {\tt ptbjetmin, etabjetmax} & If a process involving $b$-quarks is being calculated, then these can be used to specify {\em stricter} values of $p_T^{\mathrm{min}}$ and $|\eta|^{\mathrm{max}}$ for $b$-jets. Similarly, values for \texttt{ptbjetmax} and \texttt{etabjetmin} can be specified. \\ \hline \end{longtable}