You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

667 lines
20 KiB

subroutine Cfill_recur2(p1,p2,p1p2,m1,m2,m3,N0,exceptional)
implicit none
C Implements the calculation of the formfactors
C for small Gram Determinant and small Y, as in DD Eq.5.54-5.61 etc
C N0 is the offset in the common block
C--- Currently: calculates up to rank 3 with at least one recursion
c--- calculates ranks 4 and 5 with no recursion
c--- calculates metric tensor components of ranks 6 and 7
c--- JC: 11/22/2012 added an extra level of recursion. No additional
c--- identities are used, but the extra loop improves the
c--- numerical precision
include 'lib/TensorReduction/Include/types.f'
include 'lib/TensorReduction/Include/TRconstants.f'
include 'lib/TensorReduction/Include/pvBnames.f'
include 'lib/TensorReduction/Include/pvBv.f'
include 'lib/TensorReduction/Include/pvCnames.f'
include 'lib/TensorReduction/Include/pvCv.f'
include 'lib/TensorReduction/recur/Include/Carraydef.f'
include 'lib/TensorReduction/Include/pvverbose.f'
integer B12,B23,B13,np,ep,N0,pvBcache,
, i,j,k,l,m,n,i1,i2,i3,i4,i5,step,jx,kgt,lgt,ixt,jxt
parameter(np=2)
real(dp):: p1,p2,p1p2,m1,m2,m3,f(np),
. Gtwiddle(np,np),Xtwiddle0(np),Gr(np,np),DetGr,Gtt(np,np,np,np),
. Xtwiddle(0:np,0:np),Xtmax
complex(dp)::
. Shat3zz(np,-2:0),Shat4zz(np,z1max,-2:0),
. Shat5zz(np,z2max,-2:0),Shat6zz(np,z3max,-2:0),
. Shat5zzzz(np,-2:0),Shat6zzzz(np,z1max,-2:0),
. Shat7zz(np,z4max,-2:0),Shat7zzzz(np,z2max,-2:0),
. Shat1(np,-2:0),Shat2(np,z1max,-2:0),
. Shat3(np,z2max,-2:0),Shat4(np,z3max,-2:0),
. Shat5(np,z4max,-2:0),Shat6(np,z5max,-2:0),Shat7(np,z6max,-2:0)
complex(dp):: bsum1(-2:0),
. bsum0(-2:0),bsum11(-2:0),bsum00(-2:0),
. bsum111(-2:0),bsum1111(-2:0),bsum001(-2:0),
. bsum0011(-2:0),bsum0000(-2:0),
. bsum00001(-2:0),bsum00111(-2:0),bsum11111(-2:0),
. Bzero5(z5max,-2:0),Bzero4(z4max,-2:0),
. Bzero3(z3max,-2:0),Bzero2(z2max,-2:0),Bzero1(z1max,-2:0),
. Bzero0(-2:0)
logical exceptional
logical,save :: first=.true.
!$omp threadprivate(first)
exceptional=.false.
if (first) then
first=.false.
call Array2dim
call CArraysetup
endif
c--- Not necessary, routine upgraded now
c if ((m1 .ne. 0d0).or.(m2 .ne. 0d0).or.(m3 .ne. 0d0)) then
c write(6,*) 'nonzero internal masses'
c stop
c endif
B12=pvBcache(p1,m1,m2)
B23=pvBcache(p2,m2,m3)
B13=pvBcache(p1p2,m1,m3)
C----We have changed the sign of fi (different from Dfill) to agree
C----with notation of Denner-Dittmaier
f(1) = -m2 + m1 + p1
f(2) = -m3 + m1 + p1p2
Gr(1,1)=2*p1
Gr(2,2)=2*p1p2
Gr(1,2)=p1+p1p2-p2
Gr(2,1)=Gr(1,2)
call determinant(2,np,Gr,DetGr)
if (pvverbose) write(6,*) 'small Y: 2x2 DetGr = ',DetGr
Gtwiddle(1,1)=Gr(2,2)
Gtwiddle(2,2)=Gr(1,1)
Gtwiddle(1,2)=-Gr(1,2)
Gtwiddle(2,1)=-Gr(2,1)
C----setup Gtt
do i=1,2
do k=1,2
do j=1,2
do l=1,2
Gtt(i,k,j,l)=delta(i,l)*delta(k,j)-delta(i,j)*delta(k,l)
enddo
enddo
enddo
enddo
c--- setup Xtwiddle
do j=1,2
Xtwiddle0(j)=-Gtwiddle(j,1)*f(1)-Gtwiddle(j,2)*f(2)
Xtwiddle(0,j)=Xtwiddle0(j)
Xtwiddle(j,0)=Xtwiddle(0,j)
enddo
Xtwiddle(0,0)=DetGr
do i=1,2
do j=1,2
Xtwiddle(i,j)=2d0*m1*Gtwiddle(i,j)
do n=1,2
do m=1,2
Xtwiddle(i,j)=Xtwiddle(i,j)+Gtt(i,n,j,m)*f(n)*f(m)
enddo
enddo
enddo
enddo
do ep=-2,0
Bsum0(ep)=Bv(bb0+B23,ep)+Bv(bb1+B23,ep)
Bsum1(ep)=Bv(bb1+B23,ep)+Bv(bb11+B23,ep)
Bsum00(ep)=Bv(bb00+B23,ep)+Bv(bb001+B23,ep)
Bsum11(ep)=Bv(bb11+B23,ep)+Bv(bb111+B23,ep)
Bsum001(ep)=Bv(bb001+B23,ep)+Bv(bb0011+B23,ep)
Bsum111(ep)=Bv(bb111+B23,ep)+Bv(bb1111+B23,ep)
Bsum0000(ep)=Bv(bb0000+B23,ep)+Bv(bb00001+B23,ep)
Bsum0011(ep)=Bv(bb0011+B23,ep)+Bv(bb00111+B23,ep)
Bsum1111(ep)=Bv(bb1111+B23,ep)+Bv(bb11111+B23,ep)
Bsum00001(ep)=Bv(bb00001+B23,ep)+Bv(bb000011+B23,ep)
Bsum00111(ep)=Bv(bb00111+B23,ep)+Bv(bb001111+B23,ep)
Bsum11111(ep)=Bv(bb11111+B23,ep)+Bv(bb111111+B23,ep)
enddo
c write(6,'(a9,2f20.15)') 'Bsum0',Bsum0(-1)
c write(6,'(a9,2f20.15)') 'Bsum1',Bsum1(-1)
c write(6,'(a9,2f20.15)') 'Bsum00',Bsum00(-1)
c write(6,'(a9,2f20.15)') 'Bsum11',Bsum11(-1)
c write(6,'(a9,2f20.15)') 'Bsum001',Bsum001(-1)
c write(6,'(a9,2f20.15)') 'Bsum111',Bsum111(-1)
c write(6,'(a9,2f20.15)') 'Bsum0000',Bsum0000(-1)
c write(6,'(a9,2f20.15)') 'Bsum0011',Bsum0011(-1)
c write(6,'(a9,2f20.15)') 'Bsum1111',Bsum1111(-1)
c--- new implementation, in the same style as Dfill_alt.f
c--- (except ShatC.f also includes the zz definitions)
do ep=-2,0
include 'lib/TensorReduction/recur/Include/ShatC.f'
enddo
c--- note: these are the triangle parts of the S00 functions that
c--- are defined above (and commented out), except that these
c--- are a factor of two smaller
do ep=-2,0
include 'lib/TensorReduction/recur/Include/Bzero.f'
enddo
jx=1
do j=2,np
if (abs(Xtwiddle0(j)) .ge. abs(Xtwiddle0(jx))) jx=j
enddo
kgt=1
lgt=1
do k=1,np
do l=k,np
if (abs(Gtwiddle(k,l)) .ge. abs(Gtwiddle(kgt,lgt))) then
kgt=k
lgt=l
endif
enddo
enddo
ixt=1
jxt=1
do i=1,np
do j=i,np
if (abs(Xtwiddle(i,j)) .ge. abs(Xtwiddle(ixt,jxt))) then
ixt=i
jxt=j
endif
enddo
enddo
c do k=1,np
c do l=k,np
c write(6,*) k,l,Gtwiddle(k,l),Gtwiddle(kgt,lgt)
c enddo
c enddo
c pause
c write(6,*) ' Xtwiddle(0,0)', Xtwiddle(0,0)
c do j=1,np
c write(6,*) 'j, Xtwiddle(0,j)',j, Xtwiddle(0,j)
c enddo
c do j=1,np
c do k=1,np
c write(6,*) 'j, k, Xtwiddle(j,k)',j,k, Xtwiddle(j,k)
c enddo
c enddo
c--- calculate maximum entry in Xtwiddle
Xtmax=abs(Gr(1,1))
do j=1,np
do k=1,np
Xtmax=max(abs(Xtwiddle(j,k)),Xtmax)
enddo
enddo
c write(6,*) 'Xtmax=',Xtmax
c--- check for exceptional case where none of the Xtwiddle(i,j) elements
c--- are large compared to DetGr (Xtwiddle(0,0)) or Xtwiddle(0,j)
c--- [see note at end of Sec.5.5 in DD].
if ( (Xtmax/abs(Xtwiddle(0,0)) .lt. 1d1)
. .or.(Xtmax/abs(Xtwiddle0(jx)) .lt. 1d1)) then
if (pvverbose) then
write(6,*) 'EXCEPTIONAL CASE'
write(6,*) 'Maximum Xtwiddle(i,j) = ',Xtmax
write(6,*) ' Xtwiddle(0,0) = ',Xtwiddle(0,0)
write(6,*) 'maximum Xtwiddle(0,j) = ',Xtwiddle(0,jx)
endif
exceptional=.true.
return
endif
C----Begin the iteration scheme
C set all the Cv to zero
do ep=-2,0
do j=1,Ncc
Cv(j+N0,ep)=czip
enddo
enddo
do step=0,3
if (step .eq. 3) goto 103
if (step .eq. 2) goto 102
if (step .eq. 1) goto 101
if (step .eq. 0) goto 100
C--- step 3
103 continue
C--- step 2: calculate C00iiii, C00iiiii, Ciiii, Ciiiii,
c--- C0000ii, C0000iii, C000000,C000000i
102 continue
C--- a) Calculate C00iiii
C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00llll(kgt,lgt,Xtwiddle,Gtwiddle,Shat6,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C00llli, requires C00llll
C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00llli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat6,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C00lli1i2, requires C00llli1
C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lli1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat6,N0)
endif
enddo
enddo
do i1=1,np
do i2=i1,np
do i3=i2,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt) .and. (i3 .ne. lgt)) then
C--- Calculate C00li1i2i3, requires C00lli1i2
C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00li1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat6,N0)
endif
enddo
enddo
enddo
do i1=1,np
do i2=i1,np
do i3=i2,np
do i4=i3,np
if ( (i1 .ne. lgt) .and. (i2 .ne. lgt)
. .and. (i3 .ne. lgt) .and. (i4 .ne. lgt)) then
C--- Calculate C00i1i2i3i4, requires C00li1i2i3
C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00i1i2i3i4(kgt,lgt,i1,i2,i3,i4,
. Xtwiddle,Gtwiddle,Shat6,N0)
endif
enddo
enddo
enddo
enddo
C--- b) Calculate C00iiiii
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lllll(kgt,lgt,Xtwiddle,Gtwiddle,Shat7,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C00lllli, requires C00lllll
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lllli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C00llli1i2, requires C00lllli1
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00llli1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat7,N0)
endif
enddo
enddo
do i1=1,np
do i2=i1,np
do i3=i2,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt) .and. (i3 .ne. lgt)) then
C--- Calculate C00lli1i2i3, requires C00llli1i2
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lli1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat7,N0)
endif
enddo
enddo
enddo
do i1=1,np
do i2=i1,np
do i3=i2,np
do i4=i3,np
if ( (i1 .ne. lgt) .and. (i2 .ne. lgt)
. .and. (i3 .ne. lgt) .and. (i4 .ne. lgt)) then
C--- Calculate C00li1i2i3i4, requires C00lli1i2i3
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00li1i2i3i4(kgt,lgt,i1,i2,i3,i4,
. Xtwiddle,Gtwiddle,Shat7,N0)
endif
enddo
enddo
enddo
enddo
do i1=1,np
do i2=i1,np
do i3=i2,np
do i4=i3,np
do i5=i4,np
if ( (i1 .ne. lgt) .and. (i2 .ne. lgt)
. .and. (i3 .ne. lgt) .and. (i4 .ne. lgt) .and. (i5 .ne. lgt)) then
C--- Calculate C00i1i2i3i4i5, requires C00li1i2i3i4
C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00i1i2i3i4i5(kgt,lgt,i1,i2,i3,i4,i5,
. Xtwiddle,Gtwiddle,Shat7,N0)
endif
enddo
enddo
enddo
enddo
enddo
C--- c) Calculate Ciiiii, requires C00iiii,C00iiiii
C--- Small terms of order Xtwiddle(0,j)*Ciiiiii
C--- Denominator Xtwiddle(i,j)
do i1=1,np
do i2=i1,np
do i3=i2,np
do i4=i3,np
do i5=i4,np
call runCY_i1i2i3i4i5(ixt,jxt,i1,i2,i3,i4,i5,
. f,Xtwiddle,Gtt,Gtwiddle,Shat6,Bzero5,N0)
enddo
enddo
enddo
enddo
enddo
C--- d) Calculate Ciiii, requires C00iii,C00iiii
C--- Small terms of order Xtwiddle(0,j)*Ciiiii
C--- Denominator Xtwiddle(i,j)
do i1=1,np
do i2=i1,np
do i3=i2,np
do i4=i3,np
call runCY_i1i2i3i4(ixt,jxt,i1,i2,i3,i4,
. f,Xtwiddle,Gtt,Gtwiddle,Shat5,Bzero4,N0)
enddo
enddo
enddo
enddo
C--- e) Calculate C0000ii
C--- Small terms of order Xtwiddle(0,k)*Czziii,Xtwiddle(0,0)*Czziiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000ll(kgt,lgt,Xtwiddle,Gtwiddle,Shat6zz,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C0000li, requires C0000ll
C--- Small terms of order Xtwiddle(0,k)*C00iii,Xtwiddle(0,0)*C00iiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000li(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat6zz,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1.ne.lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C0000i1i2, requires C0000li1,C0000li2
C--- Small terms of order Xtwiddle(0,k)*C00iii,Xtwiddle(0,0)*C00iiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000i1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat6zz,N0)
endif
enddo
enddo
C--- f) Calculate C0000iii
C--- Small terms of order Xtwiddle(0,k)*Czziiii,Xtwiddle(0,0)*C00iiiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000lll(kgt,lgt,Xtwiddle,Gtwiddle,Shat7zz,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C0000lli, requires C0000lll
C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000lli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7zz,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C0000li1i2, requires C0000lli1
C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii
C--- Denominator Gtwiddle(k,l)
call runCY_0000li1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat7zz,N0)
endif
enddo
enddo
C--- Calculate C0000i1i2i3, requires C0000li1i2,C0000li2i3,C0000li3i1
C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii
C--- Denominator Gtwiddle(k,l)
do i1=1,np
do i2=i1,np
do i3=i2,np
if ((i1 .ne. lgt) .and.(i2 .ne. lgt) .and.(i3 .ne. lgt)) then
call runCY_0000i1i2i3(kgt,lgt,i1,i2,i3,
. Xtwiddle,Gtwiddle,Shat7zz,N0)
endif
enddo
enddo
enddo
C--- g) Calculate C000000
C--- Small terms of order Xtwiddle(0,k)*C0000i,Xtwiddle(0,0)*C0000ii
C--- Denominator Gtwiddle(k,l)
call runCY_000000(kgt,lgt,Xtwiddle,Gtwiddle,Shat6zzzz,N0)
C--- h) Calculate C000000i
C--- Small terms of order Xtwiddle(0,k)*C0000ii,Xtwiddle(0,0)*C0000iii
C--- Denominator Gtwiddle(k,l)
call runCY_000000l(kgt,lgt,Xtwiddle,Gtwiddle,Shat7zzzz,N0)
do i1=1,np
if (i1 .ne. lgt)
. call runCY_000000i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7zzzz,N0)
enddo
C--- step 1: calculate C00ii, C00iii, Cii, Ciii, C0000, C0000i
101 continue
C--- a) Calculate C00ii
C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii
C--- Denominator Gtwiddle(k,l)
call runCY_00ll(kgt,lgt,Xtwiddle,Gtwiddle,Shat4,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C00li, requires C00ll
C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii
C--- Denominator Gtwiddle(k,l)
call runCY_00li(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat4,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C00i1i2, requires C00li1,C00li2
C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii
C--- Denominator Gtwiddle(k,l)
call runCY_00i1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat4,N0)
endif
enddo
enddo
c--- b) Calculate C00iii
C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lll(kgt,lgt,Xtwiddle,Gtwiddle,Shat5,N0)
do i1=1,np
if (i1 .ne. lgt) then
C--- Calculate C00lli, requires C00lll
C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00lli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat5,N0)
endif
enddo
do i1=1,np
do i2=i1,np
if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then
C--- Calculate C00li1i2, requires C00lli1
C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii
C--- Denominator Gtwiddle(k,l)
call runCY_00li1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat5,N0)
endif
enddo
enddo
C--- Calculate C00i1i2i3, requires C00li1i2,C00li2i3,C00li3i1
C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii
C--- Denominator Gtwiddle(k,l)
do i1=1,np
do i2=i1,np
do i3=i2,np
if ((i1 .ne. lgt) .and.(i2 .ne. lgt) .and.(i3 .ne. lgt)) then
call runCY_00i1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat5,N0)
endif
enddo
enddo
enddo
C--- c) Calculate Ciii, requires C00ii,C00iii
C--- Small terms of order Xtwiddle(0,j)*Ciiii
C--- Denominator Xtwiddle(i,j)
do i1=1,np
do i2=i1,np
do i3=i2,np
call runCY_i1i2i3(ixt,jxt,i1,i2,i3,f,Xtwiddle,Gtt,Gtwiddle,Shat4,
. Bzero3,N0)
enddo
enddo
enddo
C--- d) Calculate Cii, requires C00i,C00ii
C--- Small terms of order Xtwiddle(0,j)*Ciii
C--- Denominator Xtwiddle(i,j)
do i1=1,np
do i2=i1,np
call runCY_i1i2(ixt,jxt,i1,i2,f,Xtwiddle,Gtt,Gtwiddle,Shat3,
. Bzero2,N0)
enddo
enddo
C--- e) Calculate C0000
C--- Small terms of order Xtwiddle(0,k)*C00i,Xtwiddle(0,0)*C00ii
C--- Denominator Gtwiddle(k,l)
call runCY_0000(kgt,lgt,Xtwiddle,Gtwiddle,Shat4zz,N0)
C--- f) Calculate C0000l
C--- Small terms of order Xtwiddle(0,k)*C00ii,Xtwiddle(0,0)*C00iii
C--- Denominator Gtwiddle(k,l)
call runCY_0000l(kgt,lgt,Xtwiddle,Gtwiddle,Shat5zz,N0)
do i1=1,np
if (i1 .ne. lgt)
. call runCY_0000i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat5zz,N0)
enddo
C--- step 0: calculate C00,C00i,C0 and Ci
100 continue
C--- a) Calculate C00
C--- Small terms of order Xtwiddle(0,k)*Ci,Xtwiddle(0,0)*Cii
C--- Denominator Gtwiddle(kgt,lgt)
call runCY_00(kgt,lgt,Xtwiddle,Gtwiddle,Shat2,N0)
C--- b) Calculate C00l, C00i
C--- Small terms of order Xtwiddle(0,k)*Cii,Xtwiddle(0,0)*Ciii
C--- Denominator Gtwiddle(k,l)
call runCY_00l(kgt,lgt,Xtwiddle,Gtwiddle,Shat3,N0)
C--- Calculate C00i1, requires C00l
C--- Small terms of order Xtwiddle(0,k)*Dli1,Xtwiddle(0,0)*Dkli1
C--- Denominator Gtwiddle(k,l)
do i1=1,np
if (i1 .ne. lgt) then
call runCY_00i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat3,N0)
endif
enddo
C--- c) Calculate Ci, requires C00i
C--- Small terms of order Xtwiddle(0,j)*Cii
C--- Denominator Xtwiddle(i,j)
do i1=1,np
call runCY_i(ixt,jxt,i1,f,Xtwiddle,Gtt,Gtwiddle,Shat2,Bzero1,N0)
enddo
C--- d) Calculates C0
C--- Requires C00, small terms of order Xtwiddle(0,j)*Ci
C--- Denominator Xtwiddle(i,j)
call runCY_0(ixt,jxt,f,Xtwiddle,Gtwiddle,Gtt,Shat1,Bzero0,N0)
c--- check the contents of triangle array
c write(6,*) 'recur2: C array'
c do ip=1,13
c write(6,'(i3,2e20.12)') ip,Cv(ip+N0,-1)
c enddo
c pause
enddo
c--- check the contents of triangle array
c write(6,*) 'C array'
c write(6,*) p1p2,p1,p2,m1,m2,m3
c do ip=1,Ncc
c if (abs(Csing(ip,p1p2,p1,p2,m1,m2,m3)) .ne. 0d0) then
c write(6,'(i3,4f20.15)') ip,Cv(ip+N0,-1),Cv(ip+N0,-1)
c . /Csing(ip,p1p2,p1,p2,m1,m2,m3)
c endif
c enddo
c pause
c--- check the contents of bubble arrays
c write(6,*) 'B12 array'
c do ip=1,Nbb
c if (abs(Bsing(ip,p1,m1,m2)) .ne. 0d0) then
c write(6,'(i3,2f20.15)') ip,Bv(ip+B12,-1)/Bsing(ip,p1,m1,m2)
c endif
c enddo
c write(6,*) 'B13 array'
c do ip=1,Nbb
c if (abs(Bsing(ip,p1p2,m1,m3)) .ne. 0d0) then
c write(6,'(i3,2f20.15)') ip,Bv(ip+B13,-1)/Bsing(ip,p1p2,m1,m3)
c endif
c enddo
c write(6,*) 'B23 array'
c do ip=1,Nbb
c if (abs(Bsing(ip,p2,m2,m3)) .ne. 0d0) then
c write(6,'(i3,2f20.15)') ip,Bv(ip+B23,-1)/Bsing(ip,p2,m2,m3)
c endif
c enddo
c pause
c 77 format(a3,i2,a5,3('(',e13.6,',',e13.6,') '))
end