subroutine Cfill_recur2(p1,p2,p1p2,m1,m2,m3,N0,exceptional) implicit none C Implements the calculation of the formfactors C for small Gram Determinant and small Y, as in DD Eq.5.54-5.61 etc C N0 is the offset in the common block C--- Currently: calculates up to rank 3 with at least one recursion c--- calculates ranks 4 and 5 with no recursion c--- calculates metric tensor components of ranks 6 and 7 c--- JC: 11/22/2012 added an extra level of recursion. No additional c--- identities are used, but the extra loop improves the c--- numerical precision include 'lib/TensorReduction/Include/types.f' include 'lib/TensorReduction/Include/TRconstants.f' include 'lib/TensorReduction/Include/pvBnames.f' include 'lib/TensorReduction/Include/pvBv.f' include 'lib/TensorReduction/Include/pvCnames.f' include 'lib/TensorReduction/Include/pvCv.f' include 'lib/TensorReduction/recur/Include/Carraydef.f' include 'lib/TensorReduction/Include/pvverbose.f' integer B12,B23,B13,np,ep,N0,pvBcache, , i,j,k,l,m,n,i1,i2,i3,i4,i5,step,jx,kgt,lgt,ixt,jxt parameter(np=2) real(dp):: p1,p2,p1p2,m1,m2,m3,f(np), . Gtwiddle(np,np),Xtwiddle0(np),Gr(np,np),DetGr,Gtt(np,np,np,np), . Xtwiddle(0:np,0:np),Xtmax complex(dp):: . Shat3zz(np,-2:0),Shat4zz(np,z1max,-2:0), . Shat5zz(np,z2max,-2:0),Shat6zz(np,z3max,-2:0), . Shat5zzzz(np,-2:0),Shat6zzzz(np,z1max,-2:0), . Shat7zz(np,z4max,-2:0),Shat7zzzz(np,z2max,-2:0), . Shat1(np,-2:0),Shat2(np,z1max,-2:0), . Shat3(np,z2max,-2:0),Shat4(np,z3max,-2:0), . Shat5(np,z4max,-2:0),Shat6(np,z5max,-2:0),Shat7(np,z6max,-2:0) complex(dp):: bsum1(-2:0), . bsum0(-2:0),bsum11(-2:0),bsum00(-2:0), . bsum111(-2:0),bsum1111(-2:0),bsum001(-2:0), . bsum0011(-2:0),bsum0000(-2:0), . bsum00001(-2:0),bsum00111(-2:0),bsum11111(-2:0), . Bzero5(z5max,-2:0),Bzero4(z4max,-2:0), . Bzero3(z3max,-2:0),Bzero2(z2max,-2:0),Bzero1(z1max,-2:0), . Bzero0(-2:0) logical exceptional logical,save :: first=.true. !$omp threadprivate(first) exceptional=.false. if (first) then first=.false. call Array2dim call CArraysetup endif c--- Not necessary, routine upgraded now c if ((m1 .ne. 0d0).or.(m2 .ne. 0d0).or.(m3 .ne. 0d0)) then c write(6,*) 'nonzero internal masses' c stop c endif B12=pvBcache(p1,m1,m2) B23=pvBcache(p2,m2,m3) B13=pvBcache(p1p2,m1,m3) C----We have changed the sign of fi (different from Dfill) to agree C----with notation of Denner-Dittmaier f(1) = -m2 + m1 + p1 f(2) = -m3 + m1 + p1p2 Gr(1,1)=2*p1 Gr(2,2)=2*p1p2 Gr(1,2)=p1+p1p2-p2 Gr(2,1)=Gr(1,2) call determinant(2,np,Gr,DetGr) if (pvverbose) write(6,*) 'small Y: 2x2 DetGr = ',DetGr Gtwiddle(1,1)=Gr(2,2) Gtwiddle(2,2)=Gr(1,1) Gtwiddle(1,2)=-Gr(1,2) Gtwiddle(2,1)=-Gr(2,1) C----setup Gtt do i=1,2 do k=1,2 do j=1,2 do l=1,2 Gtt(i,k,j,l)=delta(i,l)*delta(k,j)-delta(i,j)*delta(k,l) enddo enddo enddo enddo c--- setup Xtwiddle do j=1,2 Xtwiddle0(j)=-Gtwiddle(j,1)*f(1)-Gtwiddle(j,2)*f(2) Xtwiddle(0,j)=Xtwiddle0(j) Xtwiddle(j,0)=Xtwiddle(0,j) enddo Xtwiddle(0,0)=DetGr do i=1,2 do j=1,2 Xtwiddle(i,j)=2d0*m1*Gtwiddle(i,j) do n=1,2 do m=1,2 Xtwiddle(i,j)=Xtwiddle(i,j)+Gtt(i,n,j,m)*f(n)*f(m) enddo enddo enddo enddo do ep=-2,0 Bsum0(ep)=Bv(bb0+B23,ep)+Bv(bb1+B23,ep) Bsum1(ep)=Bv(bb1+B23,ep)+Bv(bb11+B23,ep) Bsum00(ep)=Bv(bb00+B23,ep)+Bv(bb001+B23,ep) Bsum11(ep)=Bv(bb11+B23,ep)+Bv(bb111+B23,ep) Bsum001(ep)=Bv(bb001+B23,ep)+Bv(bb0011+B23,ep) Bsum111(ep)=Bv(bb111+B23,ep)+Bv(bb1111+B23,ep) Bsum0000(ep)=Bv(bb0000+B23,ep)+Bv(bb00001+B23,ep) Bsum0011(ep)=Bv(bb0011+B23,ep)+Bv(bb00111+B23,ep) Bsum1111(ep)=Bv(bb1111+B23,ep)+Bv(bb11111+B23,ep) Bsum00001(ep)=Bv(bb00001+B23,ep)+Bv(bb000011+B23,ep) Bsum00111(ep)=Bv(bb00111+B23,ep)+Bv(bb001111+B23,ep) Bsum11111(ep)=Bv(bb11111+B23,ep)+Bv(bb111111+B23,ep) enddo c write(6,'(a9,2f20.15)') 'Bsum0',Bsum0(-1) c write(6,'(a9,2f20.15)') 'Bsum1',Bsum1(-1) c write(6,'(a9,2f20.15)') 'Bsum00',Bsum00(-1) c write(6,'(a9,2f20.15)') 'Bsum11',Bsum11(-1) c write(6,'(a9,2f20.15)') 'Bsum001',Bsum001(-1) c write(6,'(a9,2f20.15)') 'Bsum111',Bsum111(-1) c write(6,'(a9,2f20.15)') 'Bsum0000',Bsum0000(-1) c write(6,'(a9,2f20.15)') 'Bsum0011',Bsum0011(-1) c write(6,'(a9,2f20.15)') 'Bsum1111',Bsum1111(-1) c--- new implementation, in the same style as Dfill_alt.f c--- (except ShatC.f also includes the zz definitions) do ep=-2,0 include 'lib/TensorReduction/recur/Include/ShatC.f' enddo c--- note: these are the triangle parts of the S00 functions that c--- are defined above (and commented out), except that these c--- are a factor of two smaller do ep=-2,0 include 'lib/TensorReduction/recur/Include/Bzero.f' enddo jx=1 do j=2,np if (abs(Xtwiddle0(j)) .ge. abs(Xtwiddle0(jx))) jx=j enddo kgt=1 lgt=1 do k=1,np do l=k,np if (abs(Gtwiddle(k,l)) .ge. abs(Gtwiddle(kgt,lgt))) then kgt=k lgt=l endif enddo enddo ixt=1 jxt=1 do i=1,np do j=i,np if (abs(Xtwiddle(i,j)) .ge. abs(Xtwiddle(ixt,jxt))) then ixt=i jxt=j endif enddo enddo c do k=1,np c do l=k,np c write(6,*) k,l,Gtwiddle(k,l),Gtwiddle(kgt,lgt) c enddo c enddo c pause c write(6,*) ' Xtwiddle(0,0)', Xtwiddle(0,0) c do j=1,np c write(6,*) 'j, Xtwiddle(0,j)',j, Xtwiddle(0,j) c enddo c do j=1,np c do k=1,np c write(6,*) 'j, k, Xtwiddle(j,k)',j,k, Xtwiddle(j,k) c enddo c enddo c--- calculate maximum entry in Xtwiddle Xtmax=abs(Gr(1,1)) do j=1,np do k=1,np Xtmax=max(abs(Xtwiddle(j,k)),Xtmax) enddo enddo c write(6,*) 'Xtmax=',Xtmax c--- check for exceptional case where none of the Xtwiddle(i,j) elements c--- are large compared to DetGr (Xtwiddle(0,0)) or Xtwiddle(0,j) c--- [see note at end of Sec.5.5 in DD]. if ( (Xtmax/abs(Xtwiddle(0,0)) .lt. 1d1) . .or.(Xtmax/abs(Xtwiddle0(jx)) .lt. 1d1)) then if (pvverbose) then write(6,*) 'EXCEPTIONAL CASE' write(6,*) 'Maximum Xtwiddle(i,j) = ',Xtmax write(6,*) ' Xtwiddle(0,0) = ',Xtwiddle(0,0) write(6,*) 'maximum Xtwiddle(0,j) = ',Xtwiddle(0,jx) endif exceptional=.true. return endif C----Begin the iteration scheme C set all the Cv to zero do ep=-2,0 do j=1,Ncc Cv(j+N0,ep)=czip enddo enddo do step=0,3 if (step .eq. 3) goto 103 if (step .eq. 2) goto 102 if (step .eq. 1) goto 101 if (step .eq. 0) goto 100 C--- step 3 103 continue C--- step 2: calculate C00iiii, C00iiiii, Ciiii, Ciiiii, c--- C0000ii, C0000iii, C000000,C000000i 102 continue C--- a) Calculate C00iiii C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii C--- Denominator Gtwiddle(k,l) call runCY_00llll(kgt,lgt,Xtwiddle,Gtwiddle,Shat6,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C00llli, requires C00llll C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii C--- Denominator Gtwiddle(k,l) call runCY_00llli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat6,N0) endif enddo do i1=1,np do i2=i1,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then C--- Calculate C00lli1i2, requires C00llli1 C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii C--- Denominator Gtwiddle(k,l) call runCY_00lli1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat6,N0) endif enddo enddo do i1=1,np do i2=i1,np do i3=i2,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt) .and. (i3 .ne. lgt)) then C--- Calculate C00li1i2i3, requires C00lli1i2 C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii C--- Denominator Gtwiddle(k,l) call runCY_00li1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat6,N0) endif enddo enddo enddo do i1=1,np do i2=i1,np do i3=i2,np do i4=i3,np if ( (i1 .ne. lgt) .and. (i2 .ne. lgt) . .and. (i3 .ne. lgt) .and. (i4 .ne. lgt)) then C--- Calculate C00i1i2i3i4, requires C00li1i2i3 C--- Small terms of order Xtwiddle(0,k)*Ciiiii,Xtwiddle(0,0)*Ciiiiii C--- Denominator Gtwiddle(k,l) call runCY_00i1i2i3i4(kgt,lgt,i1,i2,i3,i4, . Xtwiddle,Gtwiddle,Shat6,N0) endif enddo enddo enddo enddo C--- b) Calculate C00iiiii C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00lllll(kgt,lgt,Xtwiddle,Gtwiddle,Shat7,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C00lllli, requires C00lllll C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00lllli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7,N0) endif enddo do i1=1,np do i2=i1,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then C--- Calculate C00llli1i2, requires C00lllli1 C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00llli1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat7,N0) endif enddo enddo do i1=1,np do i2=i1,np do i3=i2,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt) .and. (i3 .ne. lgt)) then C--- Calculate C00lli1i2i3, requires C00llli1i2 C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00lli1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat7,N0) endif enddo enddo enddo do i1=1,np do i2=i1,np do i3=i2,np do i4=i3,np if ( (i1 .ne. lgt) .and. (i2 .ne. lgt) . .and. (i3 .ne. lgt) .and. (i4 .ne. lgt)) then C--- Calculate C00li1i2i3i4, requires C00lli1i2i3 C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00li1i2i3i4(kgt,lgt,i1,i2,i3,i4, . Xtwiddle,Gtwiddle,Shat7,N0) endif enddo enddo enddo enddo do i1=1,np do i2=i1,np do i3=i2,np do i4=i3,np do i5=i4,np if ( (i1 .ne. lgt) .and. (i2 .ne. lgt) . .and. (i3 .ne. lgt) .and. (i4 .ne. lgt) .and. (i5 .ne. lgt)) then C--- Calculate C00i1i2i3i4i5, requires C00li1i2i3i4 C--- Small terms of order Xtwiddle(0,k)*Ciiiiii,Xtwiddle(0,0)*Ciiiiiii C--- Denominator Gtwiddle(k,l) call runCY_00i1i2i3i4i5(kgt,lgt,i1,i2,i3,i4,i5, . Xtwiddle,Gtwiddle,Shat7,N0) endif enddo enddo enddo enddo enddo C--- c) Calculate Ciiiii, requires C00iiii,C00iiiii C--- Small terms of order Xtwiddle(0,j)*Ciiiiii C--- Denominator Xtwiddle(i,j) do i1=1,np do i2=i1,np do i3=i2,np do i4=i3,np do i5=i4,np call runCY_i1i2i3i4i5(ixt,jxt,i1,i2,i3,i4,i5, . f,Xtwiddle,Gtt,Gtwiddle,Shat6,Bzero5,N0) enddo enddo enddo enddo enddo C--- d) Calculate Ciiii, requires C00iii,C00iiii C--- Small terms of order Xtwiddle(0,j)*Ciiiii C--- Denominator Xtwiddle(i,j) do i1=1,np do i2=i1,np do i3=i2,np do i4=i3,np call runCY_i1i2i3i4(ixt,jxt,i1,i2,i3,i4, . f,Xtwiddle,Gtt,Gtwiddle,Shat5,Bzero4,N0) enddo enddo enddo enddo C--- e) Calculate C0000ii C--- Small terms of order Xtwiddle(0,k)*Czziii,Xtwiddle(0,0)*Czziiii C--- Denominator Gtwiddle(k,l) call runCY_0000ll(kgt,lgt,Xtwiddle,Gtwiddle,Shat6zz,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C0000li, requires C0000ll C--- Small terms of order Xtwiddle(0,k)*C00iii,Xtwiddle(0,0)*C00iiii C--- Denominator Gtwiddle(k,l) call runCY_0000li(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat6zz,N0) endif enddo do i1=1,np do i2=i1,np if ((i1.ne.lgt) .and. (i2 .ne. lgt)) then C--- Calculate C0000i1i2, requires C0000li1,C0000li2 C--- Small terms of order Xtwiddle(0,k)*C00iii,Xtwiddle(0,0)*C00iiii C--- Denominator Gtwiddle(k,l) call runCY_0000i1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat6zz,N0) endif enddo enddo C--- f) Calculate C0000iii C--- Small terms of order Xtwiddle(0,k)*Czziiii,Xtwiddle(0,0)*C00iiiii C--- Denominator Gtwiddle(k,l) call runCY_0000lll(kgt,lgt,Xtwiddle,Gtwiddle,Shat7zz,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C0000lli, requires C0000lll C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii C--- Denominator Gtwiddle(k,l) call runCY_0000lli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7zz,N0) endif enddo do i1=1,np do i2=i1,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then C--- Calculate C0000li1i2, requires C0000lli1 C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii C--- Denominator Gtwiddle(k,l) call runCY_0000li1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat7zz,N0) endif enddo enddo C--- Calculate C0000i1i2i3, requires C0000li1i2,C0000li2i3,C0000li3i1 C--- Small terms of order Xtwiddle(0,k)*C00iiii,Xtwiddle(0,0)*C00iiiii C--- Denominator Gtwiddle(k,l) do i1=1,np do i2=i1,np do i3=i2,np if ((i1 .ne. lgt) .and.(i2 .ne. lgt) .and.(i3 .ne. lgt)) then call runCY_0000i1i2i3(kgt,lgt,i1,i2,i3, . Xtwiddle,Gtwiddle,Shat7zz,N0) endif enddo enddo enddo C--- g) Calculate C000000 C--- Small terms of order Xtwiddle(0,k)*C0000i,Xtwiddle(0,0)*C0000ii C--- Denominator Gtwiddle(k,l) call runCY_000000(kgt,lgt,Xtwiddle,Gtwiddle,Shat6zzzz,N0) C--- h) Calculate C000000i C--- Small terms of order Xtwiddle(0,k)*C0000ii,Xtwiddle(0,0)*C0000iii C--- Denominator Gtwiddle(k,l) call runCY_000000l(kgt,lgt,Xtwiddle,Gtwiddle,Shat7zzzz,N0) do i1=1,np if (i1 .ne. lgt) . call runCY_000000i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat7zzzz,N0) enddo C--- step 1: calculate C00ii, C00iii, Cii, Ciii, C0000, C0000i 101 continue C--- a) Calculate C00ii C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii C--- Denominator Gtwiddle(k,l) call runCY_00ll(kgt,lgt,Xtwiddle,Gtwiddle,Shat4,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C00li, requires C00ll C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii C--- Denominator Gtwiddle(k,l) call runCY_00li(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat4,N0) endif enddo do i1=1,np do i2=i1,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then C--- Calculate C00i1i2, requires C00li1,C00li2 C--- Small terms of order Xtwiddle(0,k)*Ciii,Xtwiddle(0,0)*Ciiii C--- Denominator Gtwiddle(k,l) call runCY_00i1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat4,N0) endif enddo enddo c--- b) Calculate C00iii C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii C--- Denominator Gtwiddle(k,l) call runCY_00lll(kgt,lgt,Xtwiddle,Gtwiddle,Shat5,N0) do i1=1,np if (i1 .ne. lgt) then C--- Calculate C00lli, requires C00lll C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii C--- Denominator Gtwiddle(k,l) call runCY_00lli(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat5,N0) endif enddo do i1=1,np do i2=i1,np if ((i1 .ne. lgt) .and. (i2 .ne. lgt)) then C--- Calculate C00li1i2, requires C00lli1 C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii C--- Denominator Gtwiddle(k,l) call runCY_00li1i2(kgt,lgt,i1,i2,Xtwiddle,Gtwiddle,Shat5,N0) endif enddo enddo C--- Calculate C00i1i2i3, requires C00li1i2,C00li2i3,C00li3i1 C--- Small terms of order Xtwiddle(0,k)*Ciiii,Xtwiddle(0,0)*Ciiiii C--- Denominator Gtwiddle(k,l) do i1=1,np do i2=i1,np do i3=i2,np if ((i1 .ne. lgt) .and.(i2 .ne. lgt) .and.(i3 .ne. lgt)) then call runCY_00i1i2i3(kgt,lgt,i1,i2,i3,Xtwiddle,Gtwiddle,Shat5,N0) endif enddo enddo enddo C--- c) Calculate Ciii, requires C00ii,C00iii C--- Small terms of order Xtwiddle(0,j)*Ciiii C--- Denominator Xtwiddle(i,j) do i1=1,np do i2=i1,np do i3=i2,np call runCY_i1i2i3(ixt,jxt,i1,i2,i3,f,Xtwiddle,Gtt,Gtwiddle,Shat4, . Bzero3,N0) enddo enddo enddo C--- d) Calculate Cii, requires C00i,C00ii C--- Small terms of order Xtwiddle(0,j)*Ciii C--- Denominator Xtwiddle(i,j) do i1=1,np do i2=i1,np call runCY_i1i2(ixt,jxt,i1,i2,f,Xtwiddle,Gtt,Gtwiddle,Shat3, . Bzero2,N0) enddo enddo C--- e) Calculate C0000 C--- Small terms of order Xtwiddle(0,k)*C00i,Xtwiddle(0,0)*C00ii C--- Denominator Gtwiddle(k,l) call runCY_0000(kgt,lgt,Xtwiddle,Gtwiddle,Shat4zz,N0) C--- f) Calculate C0000l C--- Small terms of order Xtwiddle(0,k)*C00ii,Xtwiddle(0,0)*C00iii C--- Denominator Gtwiddle(k,l) call runCY_0000l(kgt,lgt,Xtwiddle,Gtwiddle,Shat5zz,N0) do i1=1,np if (i1 .ne. lgt) . call runCY_0000i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat5zz,N0) enddo C--- step 0: calculate C00,C00i,C0 and Ci 100 continue C--- a) Calculate C00 C--- Small terms of order Xtwiddle(0,k)*Ci,Xtwiddle(0,0)*Cii C--- Denominator Gtwiddle(kgt,lgt) call runCY_00(kgt,lgt,Xtwiddle,Gtwiddle,Shat2,N0) C--- b) Calculate C00l, C00i C--- Small terms of order Xtwiddle(0,k)*Cii,Xtwiddle(0,0)*Ciii C--- Denominator Gtwiddle(k,l) call runCY_00l(kgt,lgt,Xtwiddle,Gtwiddle,Shat3,N0) C--- Calculate C00i1, requires C00l C--- Small terms of order Xtwiddle(0,k)*Dli1,Xtwiddle(0,0)*Dkli1 C--- Denominator Gtwiddle(k,l) do i1=1,np if (i1 .ne. lgt) then call runCY_00i(kgt,lgt,i1,Xtwiddle,Gtwiddle,Shat3,N0) endif enddo C--- c) Calculate Ci, requires C00i C--- Small terms of order Xtwiddle(0,j)*Cii C--- Denominator Xtwiddle(i,j) do i1=1,np call runCY_i(ixt,jxt,i1,f,Xtwiddle,Gtt,Gtwiddle,Shat2,Bzero1,N0) enddo C--- d) Calculates C0 C--- Requires C00, small terms of order Xtwiddle(0,j)*Ci C--- Denominator Xtwiddle(i,j) call runCY_0(ixt,jxt,f,Xtwiddle,Gtwiddle,Gtt,Shat1,Bzero0,N0) c--- check the contents of triangle array c write(6,*) 'recur2: C array' c do ip=1,13 c write(6,'(i3,2e20.12)') ip,Cv(ip+N0,-1) c enddo c pause enddo c--- check the contents of triangle array c write(6,*) 'C array' c write(6,*) p1p2,p1,p2,m1,m2,m3 c do ip=1,Ncc c if (abs(Csing(ip,p1p2,p1,p2,m1,m2,m3)) .ne. 0d0) then c write(6,'(i3,4f20.15)') ip,Cv(ip+N0,-1),Cv(ip+N0,-1) c . /Csing(ip,p1p2,p1,p2,m1,m2,m3) c endif c enddo c pause c--- check the contents of bubble arrays c write(6,*) 'B12 array' c do ip=1,Nbb c if (abs(Bsing(ip,p1,m1,m2)) .ne. 0d0) then c write(6,'(i3,2f20.15)') ip,Bv(ip+B12,-1)/Bsing(ip,p1,m1,m2) c endif c enddo c write(6,*) 'B13 array' c do ip=1,Nbb c if (abs(Bsing(ip,p1p2,m1,m3)) .ne. 0d0) then c write(6,'(i3,2f20.15)') ip,Bv(ip+B13,-1)/Bsing(ip,p1p2,m1,m3) c endif c enddo c write(6,*) 'B23 array' c do ip=1,Nbb c if (abs(Bsing(ip,p2,m2,m3)) .ne. 0d0) then c write(6,'(i3,2f20.15)') ip,Bv(ip+B23,-1)/Bsing(ip,p2,m2,m3) c endif c enddo c pause c 77 format(a3,i2,a5,3('(',e13.6,',',e13.6,') ')) end