You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

416 lines
9.5 KiB

module quadglobal
! This work was supported by the Director, Office of Science, Division
! of Mathematical, Information, and Computational Sciences of the
! U.S. Department of Energy under contract number DE-AC02-05CH11231.
! This program demonstrates the 2D quadrature routine 'quadgsq2d'.
! David H. Bailey 2007-03-23
! The function quadgsq2d is suitable to integrate any function that is
! continuous, infinitely differentiable and integrable on a 2D finite open
! interval. Singularities or vertical derivatives are permitted on the
! boundaries. This can also be used for certain integrals on infinite
! intervals, by making a suitable change of variable.
! The function(s) to be integrated is(are) defined in external function
! subprogram(s) -- see the sample function subprograms below. The name(s) of
! the function subprogram(s) must be included in appropriate type and external
! statements in the main program.
! Inputs set in parameter statement below:
! ndebug Debug level setting. Default = 2.
! ndigits1 Primary working precision. With QD precision, set to 64.
! nepsilson1 Log10 of the desired tolerance. Normally set to - ndigits1.
! nquadl Max number of phases in quadrature routine; adding 1 increases
! (possibly doubles) the number of accurate digits in the result,
! but also roughly *quadruples* the run time.
! nq2 Space parameter for wk and xk arrays in the calling program. By
! default it is set to 8 * 2^nq1. Increase nq2 if directed by a
! message in subroutine initqts.
use qdmodule
implicit none
integer ndebug, nquadl, ndigits1, nepsilon1, nwords1, nq1, nq2, nqmx
parameter (ndebug = 2, nquadl = 6, ndigits1 = 64, nepsilon1 = -64, &
nwords1 = 2, nq1 = nquadl, nq2 = 8 * 2**nq1)
type (qd_real) xk(-nq2:nq2), wk(-nq2:nq2)
end module
! program tquadgsq2d
subroutine f_main
use qdmodule
use quadglobal
implicit none
integer i, n, n1
double precision dplog10q, d1, d2, second, tm0, tm1
type (qd_real) cat, catalan, err, quadgsq2d, fun01, fun02, fun03, fun04, &
t1, t2, t3, t4, x1, x2, y1, y2
external quadgsq2d, catalan, fun01, fun02, fun03, fun04, second
integer*4 old_cw
! This line must be present in DD and QD main programs.
call f_fpu_fix_start (old_cw)
write (6, 1) ndigits1, nepsilon1, nquadl
1 format ('Quadgsq2d test'/'Digits =',i6,' Epsilon =',i6,' Quadlevel =',i6)
! Initialize quadrature tables wk and xk (weights and abscissas).
tm0 = second ()
call initqgs
tm1 = second ()
write (6, 2) tm1 - tm0
2 format ('Quadrature initialization completed: cpu time =',f12.6)
cat = catalan ()
! Begin quadrature tests.
write (6, 11)
11 format (/ &
'Problem 1: Int_-1^1 Int_-1^1 1/(1+x^2+y^2) dx dy = 4*log(2+sqrt(3))-2*pi/3')
x1 = -1.d0
x2 = 1.d0
y1 = -1.d0
y2 = 1.d0
tm0 = second ()
t1 = quadgsq2d (fun01, x1, x2, y1, y2)
tm1 = second ()
write (6, 3) tm1 - tm0
3 format ('Quadrature completed: CPU time =',f12.6/'Result =')
call qdwrite (6, t1)
t2 = 4.d0 * log (2.d0 + sqrt (qdreal (3.d0))) - 2.d0 * qdpi () / 3.d0
call decmdq (t2 - t1, d1, n1)
write (6, 4) d1, n1
4 format ('Actual error =',f10.6,'x10^',i5)
write (6, 12)
12 format (/&
'Problem 2: Int_0^pi Int_0^pi log (2-cos(s)-cos(t)) = 4*pi*cat- pi^2*log(2)')
x1 = 0.d0
x2 = qdpi()
y1 = 0.d0
y2 = qdpi()
tm0 = second ()
t1 = quadgsq2d (fun02, x1, x2, y1, y2)
tm1 = second ()
t2 = 4.d0 * qdpi() * cat - qdpi()**2 * log (qdreal (2.d0))
write (6, 3) tm1 - tm0
call qdwrite (6, t1)
call decmdq (t2 - t1, d1, n1)
write (6, 4) d1, n1
write (6, 13)
13 format (/&
'Problem 3: Int_0^inf Int_0^inf sqrt(x^2+xy+y^2) * exp(-x-y) = 1 + 3/4*log(3)')
x1 = 0.d0
x2 = 1.d0
y1 = 0.d0
y2 = 1.d0
tm0 = second ()
t1 = quadgsq2d (fun03, x1, x2, y1, y2)
tm1 = second ()
t2 = 1.d0 + 0.75d0 * log (qdreal (3.d0))
write (6, 3) tm1 - tm0
call qdwrite (6, t1)
call decmdq (t2 - t1, d1, n1)
write (6, 4) d1, n1
write (6, 14)
14 format (/&
'Problem 4: Int_0^1 Int_0^1 1/(sqrt((1-x)*(1-y))*(x+y)) dx dy = 4*cat')
x1 = 0.d0
x2 = 1.d0
y1 = 0.d0
y2 = 1.d0
tm0 = second ()
t1 = quadgsq2d (fun04, x1, x2, y1, y2)
tm1 = second ()
t2 = 4.d0 * cat
write (6, 3) tm1 - tm0
call qdwrite (6, t1)
call decmdq (t2 - t1, d1, n1)
write (6, 4) d1, n1
call f_fpu_fix_end (old_cw)
stop
end
function fun01 (s, t)
! fun01 (s,t) = 1/sqrt[1+s^2+t^2]
use qdmodule
implicit none
type (qd_real) fun01, s, t
fun01 = 1.d0 / sqrt (1.d0 + s**2 + t**2)
return
end
function fun02 (s, t)
! fun02 (s,t) = log (2 - cos(s) - cos(t))
use qdmodule
implicit none
type (qd_real) fun02, s, t, t1
t1 = 2.d0 - cos (s) - cos (t)
if (t1 > 0.d0) then
fun02 = log (2.d0 - cos (s) - cos (t))
else
fun02 = 0.d0
endif
return
end
function fun03 (s, t)
! fun03 (s,t) = ((1/s-1)^2 + (1/s-1)*(1/t-1) + (1/t-1)^2)
! / (s^2 * t^2 * exp(1/s + 1/t - 2)
use qdmodule
implicit none
type (qd_real) fun03, s, t, s1, t1, sq
external dplog10q
if (s > 3.d-3 .and. t > 3.d-3) then
s1 = 1.d0 / s - 1.d0
t1 = 1.d0 / t - 1.d0
sq = sqrt (s1**2 + s1 * t1 + t1**2)
fun03 = sq / (s**2 * t**2) * exp (-s1 - t1)
else
fun03 = 0.d0
endif
return
end
function fun04 (s, t)
! fun04 (s,t) = 1/(sqrt((1-s)*(1-t)) * (s+t))
use qdmodule
implicit none
type (qd_real) fun04, s, t
fun04 = 1.d0 / (sqrt ((1.d0 - s) * (1.d0 - t)) * (s + t))
return
end
subroutine initqgs
! This subroutine initializes the quadrature arays xk and wk for Gaussian
! quadrature. It employs a Newton iteration scheme with a dynamic precision
! level. The argument nq2, which is the space allocated for wk and xk in
! the calling program, should be at least 8 * 2^nq1 + 100, although a higher
! value may be required, depending on precision level. Monitor the space
! figure given in the message below during initialization to be certain.
! David H Bailey 2002-11-04
use qdmodule
use quadglobal
implicit none
integer i, ierror, is, j, j1, k, n, nwp, nws
double precision pi
parameter (pi = 3.141592653589793238d0)
type (qd_real) eps, r, t1, t2, t3, t4, t5
if (ndebug >= 1) then
write (6, 1)
1 format ('initqgs: Gaussian quadrature initialization')
endif
eps = 10.d0 ** nepsilon1
wk(0) = 0.d0
xk(0) = 0.d0
n = 3 * 2 ** (nq1 + 1)
write (6, *) 'n, nq2 =', n, nq2
do j = 1, n / 2
! Compute a double precision estimate of the root.
is = 0
r = cos ((pi * (j - 0.25d0)) / (n + 0.5d0))
! Compute the j-th root of the n-degree Legendre polynomial using Newton's
! iteration.
100 continue
t1 = 1.d0
t2 = 0.d0
do j1 = 1, n
t3 = t2
t2 = t1
t1 = (dble (2 * j1 - 1) * r * t2 - dble (j1 - 1) * t3) / dble (j1)
enddo
t4 = dble (n) * (r * t1 - t2) / (r ** 2 - 1.d0)
t5 = r
r = r - t1 / t4
! Once convergence is achieved at nwp = 3, then start doubling (almost) the
! working precision level at each iteration until full precision is reached.
if (abs (r - t5) > eps) goto 100
i = i + 1
if (i > nq2) goto 110
xk(i) = r
xk(-i) = -xk(i)
t4 = dble (n) * (r * t1 - t2) / (r ** 2 - 1.d0)
wk(i) = 2.d0 / ((1.d0 - r ** 2) * t4 ** 2)
wk(-i) = wk(i)
enddo
nqmx = i
if (ndebug >= 2) then
write (6, 2) i
2 format ('initqgs: Table spaced used =',i8)
endif
goto 130
110 continue
write (6, 3) nq2
3 format ('initqgsq: Table space parameter is too small; value =',i8)
stop
130 continue
return
end
function quadgsq2d (fun, x1, x2, y1, y2)
! This performs 2-D tanh-sinh quadrature. No attempt is made in this code
! to estimate errors.
! David H. Bailey 2007-03-23
use qdmodule
use quadglobal
implicit none
integer i, j, k, n
double precision h
type (qd_real) ax, bx, ay, by, quadgsq2d, fun, s1, t1, t2, &
x1, x2, xx1, y1, y2, yy1
external fun
ax = 0.5d0 * (x2 - x1)
bx = 0.5d0 * (x2 + x1)
ay = 0.5d0 * (y2 - y1)
by = 0.5d0 * (y2 + y1)
if (nqmx == 0) then
write (6, 1)
1 format ('quadgsq2d: quadrature arrays have not been initialized')
stop
endif
h = 0.5d0 ** nq1
s1 = 0.d0
do k = -nqmx, nqmx
! write (6, *) k, nqmx
yy1 = ay * xk(k) + by
do j = -nqmx, nqmx
xx1 = ax * xk(j) + bx
t1 = fun (xx1, yy1)
s1 = s1 + wk(j) * wk(k) * t1
enddo
enddo
quadgsq2d = ax * ay * s1
return
end
function catalan ()
use qdmodule
implicit none
integer k
real*8 dk, eps
type (qd_real) catalan, c1, c2, c4, c8, r16, t1, t2, t3
type (qd_real) x1, x2, x3, x4, x5, x6
c1 = 1.d0
c2 = 2.d0
c4 = 4.d0
c8 = 8.d0
r16 = 1.d0 / 16.d0
t1 = 0.d0
t2 = 1.d0
eps = 1.d-64
do k = 0, 10000000
dk = k
t3 = t2 * (c8 / (8.d0 * dk + 1.d0) ** 2 + c8 / (8.d0 * dk + 2.d0) ** 2 &
+ c4 / (8.d0 * dk + 3.d0) ** 2 - c2 / (8.d0 * dk + 5.d0) ** 2 &
- c2 / (8.d0 * dk + 6.d0) ** 2 - c1 / (8.d0 * dk + 7.d0) ** 2)
t1 = t1 + t3
t2 = r16 * t2
if (t3 < 1.d-5 * eps) goto 100
enddo
write (6, *) 'catalan: error - contact author'
100 continue
catalan = 1.d0 / 8.d0 * qdpi() * log (c2) + 1.d0 / 16.d0 * t1
return
end
function dplog10q (a)
! For input MP value a, this routine returns a DP approximation to log10 (a).
use qdmodule
implicit none
integer ia
double precision da, dplog10q, t1
type (qd_real) a
! call mpmdc (a%mpr, da, ia)
da = a
ia = 0
if (da .eq. 0.d0) then
dplog10q = -9999.d0
else
dplog10q = log10 (abs (da)) + ia * log10 (2.d0)
endif
100 continue
return
end
subroutine decmdq (a, b, ib)
! For input MP value a, this routine returns DP b and integer ib such that
! a = b * 10^ib, with 1 <= abs (b) < 10 for nonzero a.
use qdmodule
implicit none
integer ia, ib
double precision da, b, t1, xlt
parameter (xlt = 0.3010299956639812d0)
type (qd_real) a
! call mpmdc (a%mpr, da, ia)
da = a
ia = 0
if (da .ne. 0.d0) then
t1 = xlt * ia + log10 (abs (da))
ib = t1
if (t1 .lt. 0.d0) ib = ib - 1
b = sign (10.d0 ** (t1 - ib), da)
else
b = 0.d0
ib = 0
endif
return
end