You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2042 lines
96 KiB
2042 lines
96 KiB
double complex function HPL4arm1(n1,n2,n3,n4,x)
|
|
implicit none
|
|
integer n1,n2,n3,n4,j,bcflag,s,szp
|
|
double complex x,ris,myi,zp,llzp,cli4,cli4pt5
|
|
double precision pi, zeta2, zeta3,ll2,xre
|
|
|
|
pi=3.1415926535897932385D0
|
|
zeta3=1.20205690315959428539973816151d0
|
|
zeta2=pi**2/6d0
|
|
myi = dcmplx(0d0,1d0)
|
|
ll2 = dlog(2d0)
|
|
cli4pt5 = cli4(dcmplx(0.5d0,0d0))
|
|
bcflag = 0
|
|
|
|
j=1+(n4+1)*1+(n3+1)*3+(n2+1)*9+(n1+1)*27
|
|
ris = dcmplx(0d0,0d0)
|
|
|
|
c--- +i*epsilon to get branch cuts right ---
|
|
if (dimag(x).eq.0d0) then
|
|
x = x + dcmplx(0d0,1d-60)
|
|
bcflag = 1
|
|
endif
|
|
c---
|
|
|
|
select case (j)
|
|
|
|
c This was file contains the Taylor
|
|
c expansions around x = -1
|
|
c The expansion parameter is zp = x+1
|
|
|
|
case(1) !-1-1-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (llzp**4)/24d0
|
|
|
|
case(2) !-1-1-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/90d0 - zp - (zp**2)/16d0 - (z
|
|
&p**3)/81d0 - (zp**4)/256d0 - (zp**5)/625d0 - (zp**6)/12
|
|
&96d0 - (zp**7)/2401d0 - (zp**8)/4096d0 - (zp**9)/6561d0
|
|
& + (pi**2*llzp**2)/12d0 + (myi*pi*szp*llzp**3)/6d0 + ll
|
|
&zp*zeta3
|
|
|
|
case(3) !-1-1-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (zp)/2d0 + (zp**2)/64d0 + (zp**3)/648
|
|
&d0 + (zp**4)/4096d0 + (zp**5)/20000d0 + (zp**6)/82944d0
|
|
& + (zp**7)/307328d0 + (zp**8)/1048576d0 + (zp**9)/33592
|
|
&32d0 + (pi**2*ll2*llzp)/12d0 - (ll2**3*llzp)/6d0 - (pi*
|
|
&*2*llzp**2)/24d0 + (ll2**2*llzp**2)/4d0 - (ll2*llzp**3)
|
|
&/6d0 - cli4pt5 - (7d0*llzp*zeta3)/8d0
|
|
|
|
case(4) !-1-10-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/30d0) + zp*(3 - llzp) - (pi
|
|
&**2*llzp**2)/12d0 + zp**5*(3d0/625d0 - (llzp)/125d0) +
|
|
&zp**6*(1d0/432d0 - (llzp)/216d0) + zp**3*(1d0/27d0 - (l
|
|
&lzp)/27d0) + zp**7*(3d0/2401d0 - (llzp)/343d0) + zp**8*
|
|
&(3d0/4096d0 - (llzp)/512d0) + zp**4*(3d0/256d0 - (llzp)
|
|
&/64d0) + zp**9*(1d0/2187d0 - (llzp)/729d0) + zp**2*(3d0
|
|
&/16d0 - (llzp)/8d0) - 2*llzp*zeta3
|
|
|
|
case(5) !-1-100
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4)/360d0) - myi*pi*szp*zp + (1
|
|
&d0/8d0 - (myi*pi*szp)/8d0)*zp**2 + (1d0/18d0 - (myi*pi*
|
|
&szp)/27d0)*zp**3 + (11d0/384d0 - (myi*pi*szp)/64d0)*zp*
|
|
&*4 + (1d0/60d0 - (myi*pi*szp)/125d0)*zp**5 + (137d0/129
|
|
&60d0 - (myi*pi*szp)/216d0)*zp**6 + (1d0/140d0 - (myi*pi
|
|
&*szp)/343d0)*zp**7 + (363d0/71680d0 - (myi*pi*szp)/512d
|
|
&0)*zp**8 + (761d0/204120d0 - (myi*pi*szp)/729d0)*zp**9
|
|
&+ (myi*pi**3*szp*llzp)/6d0 - (pi**2*llzp**2)/4d0 + myi*
|
|
&pi*szp*zeta3 - llzp*zeta3
|
|
|
|
case(6) !-1-101
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/288d0 + zp*ll2 + (pi**2*ll2**
|
|
&2)/24d0 - (ll2**4)/24d0 + zp**5*(-(131d0/24000d0) + (ll
|
|
&2)/125d0) + zp**6*(-(661d0/207360d0) + (ll2)/216d0) + z
|
|
&p**3*(-(5d0/216d0) + (ll2)/27d0) + zp**7*(-(1327d0/6585
|
|
&60d0) + (ll2)/343d0) + zp**8*(-(1163d0/860160d0) + (ll2
|
|
&)/512d0) + zp**4*(-(1d0/96d0) + (ll2)/64d0) + zp**9*(-(
|
|
&148969d0/156764160d0) + (ll2)/729d0) + zp**2*(-(1d0/16d
|
|
&0) + (ll2)/8d0) - (pi**2*llzp**2)/24d0 - cli4pt5 - (7d0
|
|
&*ll2*zeta3)/8d0 - (5d0*llzp*zeta3)/8d0
|
|
|
|
case(7) !-1-11-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**2*ll2*llzp)/6d0) + (ll2**3*llz
|
|
&p)/3d0 + (pi**2*llzp**2)/24d0 - (ll2**2*llzp**2)/4d0 +
|
|
&zp**4*(-(3d0/4096d0) + (llzp)/1024d0) + zp**8*(-(3d0/10
|
|
&48576d0) + (llzp)/131072d0) + zp**6*(-(1d0/27648d0) + (
|
|
&llzp)/13824d0) + zp**3*(-(1d0/216d0) + (llzp)/216d0) +
|
|
&zp*(-(3d0/2d0) + (llzp)/2d0) + zp**2*(-(3d0/64d0) + (ll
|
|
&zp)/32d0) + zp**9*(-(1d0/1119744d0) + (llzp)/373248d0)
|
|
&+ zp**5*(-(3d0/20000d0) + (llzp)/4000d0) + zp**7*(-(3d0
|
|
&/307328d0) + (llzp)/43904d0) + 3*cli4pt5 + (7d0*llzp*ze
|
|
&ta3)/4d0
|
|
|
|
case(8) !-1-110
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*11d0)/720d0) + (myi*pi*szp*z
|
|
&p)/2d0 + (-(1d0/16d0) + (myi*pi*szp)/32d0)*zp**2 + (-(1
|
|
&d0/54d0) + (myi*pi*szp)/216d0)*zp**3 + (-(5d0/768d0) +
|
|
&(myi*pi*szp)/1024d0)*zp**4 + (-(1d0/375d0) + (myi*pi*sz
|
|
&p)/4000d0)*zp**5 + (-(1d0/810d0) + (myi*pi*szp)/13824d0
|
|
&)*zp**6 + (-(13d0/20580d0) + (myi*pi*szp)/43904d0)*zp**
|
|
&7 + (-(151d0/430080d0) + (myi*pi*szp)/131072d0)*zp**8 +
|
|
& (-(16d0/76545d0) + (myi*pi*szp)/373248d0)*zp**9 + (myi
|
|
&*pi**3*szp*ll2)/12d0 - (myi*pi*szp*ll2**3)/6d0 + (ll2**
|
|
&4)/8d0 - (myi*pi**3*szp*llzp)/12d0 - (pi**2*ll2*llzp)/4
|
|
&d0 + (myi*pi*szp*ll2**2*llzp)/2d0 + (pi**2*llzp**2)/24d
|
|
&0 - (myi*pi*szp*ll2*llzp**2)/2d0 + 3*cli4pt5 - (myi*pi*
|
|
&7d0*szp*zeta3)/8d0 + (13d0*llzp*zeta3)/8d0
|
|
|
|
case(9) !-1-111
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/720d0) - (zp*ll2)/2d0 - (pi
|
|
&**2*ll2**2)/12d0 + (ll2**4)/8d0 + zp**4*(11d0/6144d0 -
|
|
&(ll2)/1024d0) + zp**8*(363d0/18350080d0 - (ll2)/131072d
|
|
&0) + zp**6*(137d0/829440d0 - (ll2)/13824d0) + zp**3*(1d
|
|
&0/144d0 - (ll2)/216d0) + zp**2*(1d0/32d0 - (ll2)/32d0)
|
|
&+ zp**9*(761d0/104509440d0 - (ll2)/373248d0) + zp**5*(1
|
|
&d0/1920d0 - (ll2)/4000d0) + zp**7*(1d0/17920d0 - (ll2)/
|
|
&43904d0) + (pi**2*ll2*llzp)/12d0 - (ll2**3*llzp)/3d0 +
|
|
&(ll2**2*llzp**2)/4d0 + ll2*zeta3 - (llzp*zeta3)/8d0
|
|
|
|
case(10) !-10-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/30d0 + zp**8*(-(3d0/4096d0) +
|
|
& (llzp)/256d0 - (llzp**2)/128d0) + zp**9*(-(1d0/2187d0)
|
|
& + (2d0*llzp)/729d0 - (llzp**2)/162d0) + zp**3*(-(1d0/2
|
|
&7d0) + (2d0*llzp)/27d0 - (llzp**2)/18d0) + zp*(-3 + 2*l
|
|
&lzp - (llzp**2)/2d0) + zp**4*(-(3d0/256d0) + (llzp)/32d
|
|
&0 - (llzp**2)/32d0) + zp**5*(-(3d0/625d0) + (2d0*llzp)/
|
|
&125d0 - (llzp**2)/50d0) + zp**6*(-(1d0/432d0) + (llzp)/
|
|
&108d0 - (llzp**2)/72d0) + zp**2*(-(3d0/16d0) + (llzp)/4
|
|
&d0 - (llzp**2)/8d0) + zp**7*(-(3d0/2401d0) + (2d0*llzp)
|
|
&/343d0 - (llzp**2)/98d0) + llzp*zeta3
|
|
|
|
case(11) !-10-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*7d0)/360d0 - (myi*pi**3*szp*ll
|
|
&zp)/6d0 + zp*(-((pi**2)/6d0) + 2*myi*pi*szp - myi*pi*sz
|
|
&p*llzp) + zp**4*(49d0/576d0 - (pi**2)/96d0 + (myi*pi*sz
|
|
&p)/32d0 - (myi*pi*szp*llzp)/16d0) + zp**5*(-((pi**2)/15
|
|
&0d0) + 41d0/720d0 + (myi*pi*2d0*szp)/125d0 - (myi*pi*sz
|
|
&p*llzp)/25d0) + zp**6*(-((pi**2)/216d0) + 5269d0/129600
|
|
&d0 + (myi*pi*szp)/108d0 - (myi*pi*szp*llzp)/36d0) + zp*
|
|
&*7*(-((pi**2)/294d0) + 767d0/25200d0 + (myi*pi*2d0*szp)
|
|
&/343d0 - (myi*pi*szp*llzp)/49d0) + zp**2*(-((pi**2)/24d
|
|
&0) + 1d0/4d0 + (myi*pi*szp)/4d0 - (myi*pi*szp*llzp)/4d0
|
|
&) + zp**8*(266681d0/11289600d0 - (pi**2)/384d0 + (myi*p
|
|
&i*szp)/256d0 - (myi*pi*szp*llzp)/64d0) + zp**9*(-((pi**
|
|
&2)/486d0) + 1077749d0/57153600d0 + (myi*pi*2d0*szp)/729
|
|
&d0 - (myi*pi*szp*llzp)/81d0) + zp**3*(-((pi**2)/54d0) +
|
|
& 5d0/36d0 + (myi*pi*2d0*szp)/27d0 - (myi*pi*szp*llzp)/9
|
|
&d0) - 2*myi*pi*szp*zeta3 + 2*llzp*zeta3
|
|
|
|
case(12) !-10-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/1440d0) + (pi**2*ll2**2)/24
|
|
&d0 - (ll2**4)/24d0 + (pi**2*ll2*llzp)/4d0 + zp*((pi**2)
|
|
&/12d0 - 2*ll2 - (ll2**2)/2d0 + ll2*llzp) + zp**4*((pi**
|
|
&2)/192d0 - 83d0/2304d0 - (ll2)/32d0 - (ll2**2)/32d0 + (
|
|
&ll2*llzp)/16d0) + zp**5*((pi**2)/300d0 - 1337d0/57600d0
|
|
& - (2d0*ll2)/125d0 - (ll2**2)/50d0 + (ll2*llzp)/25d0) +
|
|
& zp**6*(-(33497d0/2073600d0) + (pi**2)/432d0 - (ll2)/10
|
|
&8d0 - (ll2**2)/72d0 + (ll2*llzp)/36d0) + zp**7*(-(5587d
|
|
&0/470400d0) + (pi**2)/588d0 - (2d0*ll2)/343d0 - (ll2**2
|
|
&)/98d0 + (ll2*llzp)/49d0) + zp**2*((pi**2)/48d0 - 1d0/8
|
|
&d0 - (ll2)/4d0 - (ll2**2)/8d0 + (ll2*llzp)/4d0) + zp**8
|
|
&*(-(136919d0/15052800d0) + (pi**2)/768d0 - (ll2)/256d0
|
|
&- (ll2**2)/128d0 + (ll2*llzp)/64d0) + zp**9*(-(35054939
|
|
&d0/4877107200d0) + (pi**2)/972d0 - (2d0*ll2)/729d0 - (l
|
|
&l2**2)/162d0 + (ll2*llzp)/81d0) + zp**3*((pi**2)/108d0
|
|
&- 1d0/16d0 - (2d0*ll2)/27d0 - (ll2**2)/18d0 + (ll2*llzp
|
|
&)/9d0) - cli4pt5 + (7d0*ll2*zeta3)/4d0 - llzp*zeta3
|
|
|
|
case(13) !-100-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/72d0) + (pi**2*zp)/6d0 + zp
|
|
&**5*(-(13d0/144d0) + (pi**2)/150d0 + (llzp)/12d0) + zp*
|
|
&*7*((pi**2)/294d0 - 161d0/3600d0 + (llzp)/20d0) + zp**6
|
|
&*((pi**2)/216d0 - 8009d0/129600d0 + (137d0*llzp)/2160d0
|
|
&) + zp**2*((pi**2)/24d0 - 1d0/2d0 + (llzp)/4d0) + zp**3
|
|
&*(-(1d0/4d0) + (pi**2)/54d0 + (llzp)/6d0) + zp**9*((pi*
|
|
&*2)/486d0 - 167101d0/6350400d0 + (761d0*llzp)/22680d0)
|
|
&+ zp**8*((pi**2)/384d0 - 190513d0/5644800d0 + (363d0*ll
|
|
&zp)/8960d0) + zp**4*(-(41d0/288d0) + (pi**2)/96d0 + (11
|
|
&d0*llzp)/96d0) - llzp*zeta3
|
|
|
|
case(14) !-1000
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*13d0)/180d0) + (pi**2*zp)/2d
|
|
&0 + ((pi**2)/8d0 + (myi*pi*szp)/4d0)*zp**2 + (-(1d0/18d
|
|
&0) + (pi**2)/18d0 + (myi*pi*szp)/6d0)*zp**3 + (-(1d0/16
|
|
&d0) + (pi**2)/32d0 + (myi*pi*11d0*szp)/96d0)*zp**4 + ((
|
|
&pi**2)/50d0 - 7d0/120d0 + (myi*pi*szp)/12d0)*zp**5 + ((
|
|
&pi**2)/72d0 - 5d0/96d0 + (myi*pi*137d0*szp)/2160d0)*zp*
|
|
&*6 + (-(29d0/630d0) + (pi**2)/98d0 + (myi*pi*szp)/20d0)
|
|
&*zp**7 + ((pi**2)/128d0 - 469d0/11520d0 + (myi*pi*363d0
|
|
&*szp)/8960d0)*zp**8 + ((pi**2)/162d0 - 29531d0/816480d0
|
|
& + (myi*pi*761d0*szp)/22680d0)*zp**9 - (myi*pi**3*szp*l
|
|
&lzp)/6d0 - myi*pi*szp*zeta3
|
|
|
|
case(15) !-1001
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*11d0)/360d0) + (pi**2*zp)/12
|
|
&d0 - (pi**2*ll2**2)/12d0 + (ll2**4)/12d0 + zp**5*((pi**
|
|
&2)/300d0 + 1d0/40d0 - (ll2)/12d0) + zp**7*(103d0/5760d0
|
|
& + (pi**2)/588d0 - (ll2)/20d0) + zp**6*((pi**2)/432d0 +
|
|
& 731d0/34560d0 - (137d0*ll2)/2160d0) + zp**2*((pi**2)/4
|
|
&8d0 - (ll2)/4d0) + zp**3*((pi**2)/108d0 + 1d0/36d0 - (l
|
|
&l2)/6d0) + zp**9*(42799d0/3265920d0 + (pi**2)/972d0 - (
|
|
&761d0*ll2)/22680d0) + zp**8*(3931d0/258048d0 + (pi**2)/
|
|
&768d0 - (363d0*ll2)/8960d0) + zp**4*((pi**2)/192d0 + 11
|
|
&d0/384d0 - (11d0*ll2)/96d0) + 2*cli4pt5 + (7d0*ll2*zeta
|
|
&3)/4d0 - (3d0*llzp*zeta3)/4d0
|
|
|
|
case(16) !-101-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/160d0) - (pi**2*ll2**2)/8d0
|
|
& + (ll2**4)/8d0 + zp*(-((pi**2)/12d0) + (ll2**2)/2d0) -
|
|
& (pi**2*ll2*llzp)/4d0 + zp**8*(7401d0/627200d0 - (pi**2
|
|
&)/768d0 + (ll2**2)/128d0 - (1163d0*llzp)/107520d0) + zp
|
|
&**9*(398917091d0/43893964800d0 - (pi**2)/972d0 + (ll2**
|
|
&2)/162d0 - (148969d0*llzp)/17418240d0) + zp**4*(-((pi**
|
|
&2)/192d0) + 131d0/2304d0 + (ll2**2)/32d0 - (llzp)/24d0)
|
|
& + zp**5*(-((pi**2)/300d0) + 9829d0/288000d0 + (ll2**2)
|
|
&/50d0 - (131d0*llzp)/4800d0) + zp**6*(-((pi**2)/432d0)
|
|
&+ 46717d0/2073600d0 + (ll2**2)/72d0 - (661d0*llzp)/3456
|
|
&0d0) + zp**3*(-((pi**2)/108d0) + 47d0/432d0 + (ll2**2)/
|
|
&18d0 - (5d0*llzp)/72d0) + zp**2*(-((pi**2)/48d0) + 1d0/
|
|
&4d0 + (ll2**2)/8d0 - (llzp)/8d0) + zp**7*(52379d0/32928
|
|
&00d0 - (pi**2)/588d0 + (ll2**2)/98d0 - (1327d0*llzp)/94
|
|
&080d0) + 3*cli4pt5 + (13d0*llzp*zeta3)/8d0
|
|
|
|
case(17) !-1010
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*17d0)/1440d0 + zp*(-((pi**2)/1
|
|
&2d0) + myi*pi*szp*ll2) + zp**4*(-((pi**2)/192d0) + 5d0/
|
|
&192d0 - (myi*pi*szp)/24d0 + (myi*pi*szp*ll2)/16d0) + zp
|
|
&**5*(-((pi**2)/300d0) + 1d0/48d0 - (myi*pi*131d0*szp)/4
|
|
&800d0 + (myi*pi*szp*ll2)/25d0) + zp**6*(-((pi**2)/432d0
|
|
&) + 47d0/2880d0 - (myi*pi*661d0*szp)/34560d0 + (myi*pi*
|
|
&szp*ll2)/36d0) + zp**7*(13d0/1008d0 - (pi**2)/588d0 - (
|
|
&myi*pi*1327d0*szp)/94080d0 + (myi*pi*szp*ll2)/49d0) + z
|
|
&p**2*(-((pi**2)/48d0) - (myi*pi*szp)/8d0 + (myi*pi*szp*
|
|
&ll2)/4d0) + zp**8*(3341d0/322560d0 - (pi**2)/768d0 - (m
|
|
&yi*pi*1163d0*szp)/107520d0 + (myi*pi*szp*ll2)/64d0) + z
|
|
&p**9*(13817d0/1632960d0 - (pi**2)/972d0 - (myi*pi*14896
|
|
&9d0*szp)/17418240d0 + (myi*pi*szp*ll2)/81d0) + zp**3*(-
|
|
&((pi**2)/108d0) + 1d0/36d0 - (myi*pi*5d0*szp)/72d0 + (m
|
|
&yi*pi*szp*ll2)/9d0) - (myi*pi**3*szp*llzp)/12d0 - (myi*
|
|
&pi*5d0*szp*zeta3)/8d0 + (3d0*llzp*zeta3)/2d0
|
|
|
|
case(18) !-1011
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/480d0 - (zp*ll2**2)/2d0 + zp*
|
|
&*8*(-(137d0/36864d0) + (1163d0*ll2)/107520d0 - (ll2**2)
|
|
&/128d0) + zp**9*(-(617027d0/209018880d0) + (148969d0*ll
|
|
&2)/17418240d0 - (ll2**2)/162d0) + zp**3*(-(1d0/72d0) +
|
|
&(5d0*ll2)/72d0 - (ll2**2)/18d0) + zp**4*(-(3d0/256d0) +
|
|
& (ll2)/24d0 - (ll2**2)/32d0) + zp**5*(-(83d0/9600d0) +
|
|
&(131d0*ll2)/4800d0 - (ll2**2)/50d0) + zp**6*(-(11d0/172
|
|
&8d0) + (661d0*ll2)/34560d0 - (ll2**2)/72d0) + zp**2*((l
|
|
&l2)/8d0 - (ll2**2)/8d0) + zp**7*(-(5417d0/1128960d0) +
|
|
&(1327d0*ll2)/94080d0 - (ll2**2)/98d0) + (llzp*zeta3)/8d
|
|
&0
|
|
|
|
case(19) !-11-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**2*ll2*llzp)/12d0 - (ll2**3*llzp)
|
|
&/6d0 + zp**7*(3d0/307328d0 - (llzp)/21952d0 + (llzp**2)
|
|
&/12544d0) + zp**3*(1d0/216d0 - (llzp)/108d0 + (llzp**2)
|
|
&/144d0) + zp**5*(3d0/20000d0 - (llzp)/2000d0 + (llzp**2
|
|
&)/1600d0) + zp**8*(3d0/1048576d0 - (llzp)/65536d0 + (ll
|
|
&zp**2)/32768d0) + zp**2*(3d0/64d0 - (llzp)/16d0 + (llzp
|
|
&**2)/32d0) + zp**6*(1d0/27648d0 - (llzp)/6912d0 + (llzp
|
|
&**2)/4608d0) + zp*(3d0/2d0 - llzp + (llzp**2)/4d0) + zp
|
|
&**4*(3d0/4096d0 - (llzp)/512d0 + (llzp**2)/512d0) + zp*
|
|
&*9*(1d0/1119744d0 - (llzp)/186624d0 + (llzp**2)/82944d0
|
|
&) - 3*cli4pt5 - (7d0*llzp*zeta3)/8d0
|
|
|
|
case(20) !-11-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/96d0 - (myi*pi**3*szp*ll2)/6d
|
|
&0 - (pi**2*ll2**2)/24d0 + (myi*pi*szp*ll2**3)/3d0 - (ll
|
|
&2**4)/8d0 + (myi*pi**3*szp*llzp)/12d0 + (pi**2*ll2*llzp
|
|
&)/12d0 - (myi*pi*szp*ll2**2*llzp)/2d0 + zp**8*(-(9701d0
|
|
&/15052800d0) + (pi**2)/98304d0 - (myi*pi*szp)/65536d0 +
|
|
& (myi*pi*szp*llzp)/16384d0) + zp**2*(-(1d0/8d0) + (pi**
|
|
&2)/96d0 - (myi*pi*szp)/16d0 + (myi*pi*szp*llzp)/16d0) +
|
|
& zp**6*((pi**2)/13824d0 - 347d0/129600d0 - (myi*pi*szp)
|
|
&/6912d0 + (myi*pi*szp*llzp)/2304d0) + zp**4*((pi**2)/15
|
|
&36d0 - 35d0/2304d0 - (myi*pi*szp)/512d0 + (myi*pi*szp*l
|
|
&lzp)/256d0) + zp*((pi**2)/12d0 - myi*pi*szp + (myi*pi*s
|
|
&zp*llzp)/2d0) + zp**9*((pi**2)/248832d0 - 209d0/595350d
|
|
&0 - (myi*pi*szp)/186624d0 + (myi*pi*szp*llzp)/41472d0)
|
|
&+ zp**7*(-(149d0/117600d0) + (pi**2)/37632d0 - (myi*pi*
|
|
&szp)/21952d0 + (myi*pi*szp*llzp)/6272d0) + zp**3*(-(1d0
|
|
&/24d0) + (pi**2)/432d0 - (myi*pi*szp)/108d0 + (myi*pi*s
|
|
&zp*llzp)/72d0) + zp**5*(-(11d0/1800d0) + (pi**2)/4800d0
|
|
& - (myi*pi*szp)/2000d0 + (myi*pi*szp*llzp)/800d0) - 3*c
|
|
&li4pt5 + (myi*pi*7d0*szp*zeta3)/4d0 - llzp*zeta3
|
|
|
|
case(21) !-11-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/160d0 + (pi**2*ll2**2)/8d0 -
|
|
&(ll2**4)/8d0 - (pi**2*ll2*llzp)/12d0 + (ll2**3*llzp)/6d
|
|
&0 + zp**8*(-((pi**2)/196608d0) + 266681d0/2890137600d0
|
|
&+ (ll2)/65536d0 + (ll2**2)/32768d0 - (ll2*llzp)/16384d0
|
|
&) + zp**2*(1d0/16d0 - (pi**2)/192d0 + (ll2)/16d0 + (ll2
|
|
&**2)/32d0 - (ll2*llzp)/16d0) + zp**6*(-((pi**2)/27648d0
|
|
&) + 5269d0/8294400d0 + (ll2)/6912d0 + (ll2**2)/4608d0 -
|
|
& (ll2*llzp)/2304d0) + zp**4*(-((pi**2)/3072d0) + 49d0/9
|
|
&216d0 + (ll2)/512d0 + (ll2**2)/512d0 - (ll2*llzp)/256d0
|
|
&) + zp*(-((pi**2)/24d0) + ll2 + (ll2**2)/4d0 - (ll2*llz
|
|
&p)/2d0) + zp**9*(1077749d0/29262643200d0 - (pi**2)/4976
|
|
&64d0 + (ll2)/186624d0 + (ll2**2)/82944d0 - (ll2*llzp)/4
|
|
&1472d0) + zp**7*(-((pi**2)/75264d0) + 767d0/3225600d0 +
|
|
& (ll2)/21952d0 + (ll2**2)/12544d0 - (ll2*llzp)/6272d0)
|
|
&+ zp**3*(5d0/288d0 - (pi**2)/864d0 + (ll2)/108d0 + (ll2
|
|
&**2)/144d0 - (ll2*llzp)/72d0) + zp**5*(41d0/23040d0 - (
|
|
&pi**2)/9600d0 + (ll2)/2000d0 + (ll2**2)/1600d0 - (ll2*l
|
|
&lzp)/800d0) - 2*ll2*zeta3 + (llzp*zeta3)/4d0
|
|
|
|
case(22) !-110-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4*29d0)/1440d0 - (pi**2*zp)/12d0
|
|
& + (pi**2*ll2**2)/24d0 - (ll2**4)/8d0 + (pi**2*ll2*llzp
|
|
&)/6d0 + zp**6*(-((pi**2)/13824d0) + 667d0/129600d0 - (l
|
|
&lzp)/135d0) + zp**3*(17d0/216d0 - (pi**2)/432d0 - (llzp
|
|
&)/18d0) + zp**7*(-((pi**2)/37632d0) + 2083d0/823200d0 -
|
|
& (13d0*llzp)/2940d0) + zp**8*(6757d0/5017600d0 - (pi**2
|
|
&)/98304d0 - (151d0*llzp)/53760d0) + zp**4*(-((pi**2)/15
|
|
&36d0) + 65d0/2304d0 - (5d0*llzp)/192d0) + zp**5*(-((pi*
|
|
&*2)/4800d0) + 103d0/9000d0 - (llzp)/75d0) + zp**9*(-((p
|
|
&i**2)/248832d0) + 4121d0/5358150d0 - (16d0*llzp)/8505d0
|
|
&) + zp**2*(1d0/4d0 - (pi**2)/96d0 - (llzp)/8d0) - 3*cli
|
|
&4pt5 - (5d0*llzp*zeta3)/8d0
|
|
|
|
case(23) !-1100
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*17d0)/360d0 - (pi**2*zp)/4d0 +
|
|
& (-((pi**2)/32d0) - (myi*pi*szp)/8d0)*zp**2 + (-((pi**2
|
|
&)/144d0) + 1d0/36d0 - (myi*pi*szp)/18d0)*zp**3 + (3d0/1
|
|
&28d0 - (pi**2)/512d0 - (myi*pi*5d0*szp)/192d0)*zp**4 +
|
|
&(-((pi**2)/1600d0) + 1d0/60d0 - (myi*pi*szp)/75d0)*zp**
|
|
&5 + (-((pi**2)/4608d0) + 5d0/432d0 - (myi*pi*szp)/135d0
|
|
&)*zp**6 + (-((pi**2)/12544d0) + 41d0/5040d0 - (myi*pi*1
|
|
&3d0*szp)/2940d0)*zp**7 + (-((pi**2)/32768d0) + 539d0/92
|
|
&160d0 - (myi*pi*151d0*szp)/53760d0)*zp**8 + (22d0/5103d
|
|
&0 - (pi**2)/82944d0 - (myi*pi*16d0*szp)/8505d0)*zp**9 -
|
|
& (myi*pi**3*szp*ll2)/4d0 - (pi**2*ll2**2)/6d0 - (ll2**4
|
|
&)/12d0 + (myi*pi**3*szp*llzp)/12d0 + (pi**2*ll2*llzp)/2
|
|
&d0 - 2*cli4pt5 + (myi*pi*13d0*szp*zeta3)/8d0 - (3d0*llz
|
|
&p*zeta3)/4d0
|
|
|
|
case(24) !-1101
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/24d0 - (pi**2*zp)/24d0 + (pi*
|
|
&*2*ll2**2)/8d0 - (ll2**4)/6d0 + zp**6*(-((pi**2)/27648d
|
|
&0) - 97d0/23040d0 + (ll2)/135d0) + zp**3*(-(1d0/72d0) -
|
|
& (pi**2)/864d0 + (ll2)/18d0) + zp**7*(-((pi**2)/75264d0
|
|
&) - 767d0/282240d0 + (13d0*ll2)/2940d0) + zp**8*(-((pi*
|
|
&*2)/196608d0) - 935d0/516096d0 + (151d0*ll2)/53760d0) +
|
|
& zp**4*(-((pi**2)/3072d0) - 1d0/96d0 + (5d0*ll2)/192d0)
|
|
& + zp**5*(-(1d0/150d0) - (pi**2)/9600d0 + (ll2)/75d0) +
|
|
& zp**9*(-(2041d0/1632960d0) - (pi**2)/497664d0 + (16d0*
|
|
&ll2)/8505d0) + zp**2*(-((pi**2)/192d0) + (ll2)/8d0) + (
|
|
&pi**2*ll2*llzp)/12d0 - 4*cli4pt5 - (21d0*ll2*zeta3)/8d0
|
|
& - (llzp*zeta3)/4d0
|
|
|
|
case(25) !-111-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/288d0) + (pi**2*ll2**2)/24d
|
|
&0 - (ll2**4)/8d0 + zp*((pi**2)/24d0 - (ll2**2)/4d0) + (
|
|
&ll2**3*llzp)/6d0 + zp**6*((pi**2)/27648d0 - 8009d0/8294
|
|
&400d0 - (ll2**2)/4608d0 + (137d0*llzp)/138240d0) + zp**
|
|
&4*((pi**2)/3072d0 - 41d0/4608d0 - (ll2**2)/512d0 + (11d
|
|
&0*llzp)/1536d0) + zp**2*((pi**2)/192d0 - 1d0/8d0 - (ll2
|
|
&**2)/32d0 + (llzp)/16d0) + zp**7*(-(161d0/460800d0) + (
|
|
&pi**2)/75264d0 - (ll2**2)/12544d0 + (llzp)/2560d0) + zp
|
|
&**8*(-(190513d0/1445068800d0) + (pi**2)/196608d0 - (ll2
|
|
&**2)/32768d0 + (363d0*llzp)/2293760d0) + zp**5*(-(13d0/
|
|
&4608d0) + (pi**2)/9600d0 - (ll2**2)/1600d0 + (llzp)/384
|
|
&d0) + zp**3*(-(1d0/32d0) + (pi**2)/864d0 - (ll2**2)/144
|
|
&d0 + (llzp)/48d0) + zp**9*(-(167101d0/3251404800d0) + (
|
|
&pi**2)/497664d0 - (ll2**2)/82944d0 + (761d0*llzp)/11612
|
|
&160d0) - (llzp*zeta3)/8d0
|
|
|
|
case(26) !-1110
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*7d0)/360d0) + (myi*pi**3*szp
|
|
&*ll2)/12d0 + (pi**2*ll2**2)/12d0 - (myi*pi*szp*ll2**3)/
|
|
&3d0 + (ll2**4)/12d0 + zp**8*(-(1019d0/1290240d0) + (pi*
|
|
&*2)/196608d0 + (myi*pi*363d0*szp)/2293760d0 - (myi*pi*s
|
|
&zp*ll2)/16384d0) + zp**2*((pi**2)/192d0 + (myi*pi*szp)/
|
|
&16d0 - (myi*pi*szp*ll2)/16d0) + zp**6*((pi**2)/27648d0
|
|
&- 23d0/8640d0 + (myi*pi*137d0*szp)/138240d0 - (myi*pi*s
|
|
&zp*ll2)/2304d0) + zp**4*((pi**2)/3072d0 - 7d0/768d0 + (
|
|
&myi*pi*11d0*szp)/1536d0 - (myi*pi*szp*ll2)/256d0) + zp*
|
|
&((pi**2)/24d0 - (myi*pi*szp*ll2)/2d0) + zp**9*((pi**2)/
|
|
&497664d0 - 23d0/51030d0 + (myi*pi*761d0*szp)/11612160d0
|
|
& - (myi*pi*szp*ll2)/41472d0) + zp**7*(-(101d0/70560d0)
|
|
&+ (pi**2)/75264d0 + (myi*pi*szp)/2560d0 - (myi*pi*szp*l
|
|
&l2)/6272d0) + zp**3*(-(1d0/72d0) + (pi**2)/864d0 + (myi
|
|
&*pi*szp)/48d0 - (myi*pi*szp*ll2)/72d0) + zp**5*(-(1d0/2
|
|
&00d0) + (pi**2)/9600d0 + (myi*pi*szp)/384d0 - (myi*pi*s
|
|
&zp*ll2)/800d0) - (pi**2*ll2*llzp)/12d0 + (myi*pi*szp*ll
|
|
&2**2*llzp)/2d0 + 2*cli4pt5 - (myi*pi*szp*zeta3)/8d0 + (
|
|
&llzp*zeta3)/8d0
|
|
|
|
case(27) !-1111
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/90d0) - (pi**2*ll2**2)/12d0
|
|
& + (zp*ll2**2)/4d0 + (ll2**4)/6d0 + zp**7*(29d0/80640d0
|
|
& - (ll2)/2560d0 + (ll2**2)/12544d0) + zp**3*(1d0/144d0
|
|
&- (ll2)/48d0 + (ll2**2)/144d0) + zp**5*(7d0/3840d0 - (l
|
|
&l2)/384d0 + (ll2**2)/1600d0) + zp**8*(469d0/2949120d0 -
|
|
& (363d0*ll2)/2293760d0 + (ll2**2)/32768d0) + zp**2*(-((
|
|
&ll2)/16d0) + (ll2**2)/32d0) + zp**6*(5d0/6144d0 - (137d
|
|
&0*ll2)/138240d0 + (ll2**2)/4608d0) + zp**4*(1d0/256d0 -
|
|
& (11d0*ll2)/1536d0 + (ll2**2)/512d0) + zp**9*(29531d0/4
|
|
&18037760d0 - (761d0*ll2)/11612160d0 + (ll2**2)/82944d0)
|
|
& - (ll2**3*llzp)/6d0 + cli4pt5 + ll2*zeta3
|
|
|
|
case(28) !0-1-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/90d0) + zp**2*(1d0/16d0 - (
|
|
&llzp)/8d0 + (llzp**2)/8d0 - (llzp**3)/12d0) + zp**3*(1d
|
|
&0/81d0 - (llzp)/27d0 + (llzp**2)/18d0 - (llzp**3)/18d0)
|
|
& + zp**4*(1d0/256d0 - (llzp)/64d0 + (llzp**2)/32d0 - (l
|
|
&lzp**3)/24d0) + zp**5*(1d0/625d0 - (llzp)/125d0 + (llzp
|
|
&**2)/50d0 - (llzp**3)/30d0) + zp**6*(1d0/1296d0 - (llzp
|
|
&)/216d0 + (llzp**2)/72d0 - (llzp**3)/36d0) + zp**7*(1d0
|
|
&/2401d0 - (llzp)/343d0 + (llzp**2)/98d0 - (llzp**3)/42d
|
|
&0) + zp**8*(1d0/4096d0 - (llzp)/512d0 + (llzp**2)/128d0
|
|
& - (llzp**3)/48d0) + zp**9*(1d0/6561d0 - (llzp)/729d0 +
|
|
& (llzp**2)/162d0 - (llzp**3)/54d0) + zp*(1 - llzp + (ll
|
|
&zp**2)/2d0 - (llzp**3)/6d0)
|
|
|
|
case(29) !0-1-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4)/72d0) + zp*((pi**2)/6d0 - m
|
|
&yi*pi*szp - (pi**2*llzp)/6d0 + myi*pi*szp*llzp - (myi*p
|
|
&i*szp*llzp**2)/2d0 - zeta3) + myi*pi*szp*zeta3 + zp**2*
|
|
&((pi**2)/24d0 + 1d0/2d0 - (myi*pi*szp)/8d0 - (pi**2*llz
|
|
&p)/12d0 + (myi*pi*szp*llzp)/4d0 - (myi*pi*szp*llzp**2)/
|
|
&4d0 - (zeta3)/2d0) + zp**3*((pi**2)/54d0 + 3d0/8d0 - (m
|
|
&yi*pi*szp)/27d0 - (pi**2*llzp)/18d0 + (myi*pi*szp*llzp)
|
|
&/9d0 - (myi*pi*szp*llzp**2)/6d0 - (zeta3)/3d0) + zp**4*
|
|
&(251d0/864d0 + (pi**2)/96d0 - (myi*pi*szp)/64d0 - (pi**
|
|
&2*llzp)/24d0 + (myi*pi*szp*llzp)/16d0 - (myi*pi*szp*llz
|
|
&p**2)/8d0 - (zeta3)/4d0) + zp**5*((pi**2)/150d0 + 407d0
|
|
&/1728d0 - (myi*pi*szp)/125d0 - (pi**2*llzp)/30d0 + (myi
|
|
&*pi*szp*llzp)/25d0 - (myi*pi*szp*llzp**2)/10d0 - (zeta3
|
|
&)/5d0) + zp**6*((pi**2)/216d0 + 256103d0/1296000d0 - (m
|
|
&yi*pi*szp)/216d0 - (pi**2*llzp)/36d0 + (myi*pi*szp*llzp
|
|
&)/36d0 - (myi*pi*szp*llzp**2)/12d0 - (zeta3)/6d0) + zp*
|
|
&*7*((pi**2)/294d0 + 4081d0/24000d0 - (myi*pi*szp)/343d0
|
|
& - (pi**2*llzp)/42d0 + (myi*pi*szp*llzp)/49d0 - (myi*pi
|
|
&*szp*llzp**2)/14d0 - (zeta3)/7d0) + zp**8*((pi**2)/384d
|
|
&0 + 9822481d0/65856000d0 - (myi*pi*szp)/512d0 - (pi**2*
|
|
&llzp)/48d0 + (myi*pi*szp*llzp)/64d0 - (myi*pi*szp*llzp*
|
|
&*2)/16d0 - (zeta3)/8d0) + zp**9*((pi**2)/486d0 + 787084
|
|
&73d0/592704000d0 - (myi*pi*szp)/729d0 - (pi**2*llzp)/54
|
|
&d0 + (myi*pi*szp*llzp)/81d0 - (myi*pi*szp*llzp**2)/18d0
|
|
& - (zeta3)/9d0)
|
|
|
|
case(30) !0-1-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/80d0 - (pi**2*ll2**2)/12d0 -
|
|
&(ll2**4)/24d0 - cli4pt5 - (7d0*ll2*zeta3)/8d0 + zp**2*(
|
|
&-((pi**2)/48d0) - 1d0/4d0 - (pi**2*ll2)/24d0 + (ll2)/8d
|
|
&0 + (ll2**2)/8d0 + (ll2**3)/12d0 + (pi**2*llzp)/24d0 -
|
|
&(ll2*llzp)/4d0 - (ll2**2*llzp)/4d0 + (ll2*llzp**2)/4d0
|
|
&+ (7d0*zeta3)/16d0) + zp**3*(-((pi**2)/108d0) - 17d0/96
|
|
&d0 + (ll2)/27d0 - (pi**2*ll2)/36d0 + (ll2**2)/18d0 + (l
|
|
&l2**3)/18d0 + (pi**2*llzp)/36d0 - (ll2*llzp)/9d0 - (ll2
|
|
&**2*llzp)/6d0 + (ll2*llzp**2)/6d0 + (7d0*zeta3)/24d0) +
|
|
& zp**4*(-((pi**2)/192d0) - 463d0/3456d0 - (pi**2*ll2)/4
|
|
&8d0 + (ll2)/64d0 + (ll2**2)/32d0 + (ll2**3)/24d0 + (pi*
|
|
&*2*llzp)/48d0 - (ll2*llzp)/16d0 - (ll2**2*llzp)/8d0 + (
|
|
&ll2*llzp**2)/8d0 + (7d0*zeta3)/32d0) + zp**5*(-(14843d0
|
|
&/138240d0) - (pi**2)/300d0 + (ll2)/125d0 - (pi**2*ll2)/
|
|
&60d0 + (ll2**2)/50d0 + (ll2**3)/30d0 + (pi**2*llzp)/60d
|
|
&0 - (ll2*llzp)/25d0 - (ll2**2*llzp)/10d0 + (ll2*llzp**2
|
|
&)/10d0 + (7d0*zeta3)/40d0) + zp**6*(-(1856239d0/2073600
|
|
&0d0) - (pi**2)/432d0 + (ll2)/216d0 - (pi**2*ll2)/72d0 +
|
|
& (ll2**2)/72d0 + (ll2**3)/36d0 + (pi**2*llzp)/72d0 - (l
|
|
&l2*llzp)/36d0 - (ll2**2*llzp)/12d0 + (ll2*llzp**2)/12d0
|
|
& + (7d0*zeta3)/48d0) + zp**8*(-((pi**2)/768d0) - 636802
|
|
&727d0/9483264000d0 + (ll2)/512d0 - (pi**2*ll2)/96d0 + (
|
|
&ll2**2)/128d0 + (ll2**3)/48d0 + (pi**2*llzp)/96d0 - (ll
|
|
&2*llzp)/64d0 - (ll2**2*llzp)/16d0 + (ll2*llzp**2)/16d0
|
|
&+ (7d0*zeta3)/64d0) + zp**9*(-(81511906681d0/1365590016
|
|
&000d0) - (pi**2)/972d0 - (pi**2*ll2)/108d0 + (ll2)/729d
|
|
&0 + (ll2**2)/162d0 + (ll2**3)/54d0 + (pi**2*llzp)/108d0
|
|
& - (ll2*llzp)/81d0 - (ll2**2*llzp)/18d0 + (ll2*llzp**2)
|
|
&/18d0 + (7d0*zeta3)/72d0) + zp**7*(-(1856489d0/24192000
|
|
&d0) - (pi**2)/588d0 + (ll2)/343d0 - (pi**2*ll2)/84d0 +
|
|
&(ll2**2)/98d0 + (ll2**3)/42d0 + (pi**2*llzp)/84d0 - (ll
|
|
&2*llzp)/49d0 - (ll2**2*llzp)/14d0 + (ll2*llzp**2)/14d0
|
|
&+ (zeta3)/8d0) + zp*(-((pi**2)/12d0) + ll2 - (pi**2*ll2
|
|
&)/12d0 + (ll2**2)/2d0 + (ll2**3)/6d0 + (pi**2*llzp)/12d
|
|
&0 - ll2*llzp - (ll2**2*llzp)/2d0 + (ll2*llzp**2)/2d0 +
|
|
&(7d0*zeta3)/8d0)
|
|
|
|
case(31) !0-10-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/120d0 + zp**2*(-((pi**2)/24d0
|
|
&) - 5d0/4d0 + (pi**2*llzp)/12d0 + (llzp)/2d0 + zeta3) +
|
|
& zp*(-((pi**2)/6d0) + (pi**2*llzp)/6d0 + 2*zeta3) + zp*
|
|
&*4*(-(1151d0/1728d0) - (pi**2)/96d0 + (pi**2*llzp)/24d0
|
|
& + (49d0*llzp)/144d0 + (zeta3)/2d0) + zp**6*(-((pi**2)/
|
|
&216d0) - 17653d0/40500d0 + (pi**2*llzp)/36d0 + (5269d0*
|
|
&llzp)/21600d0 + (zeta3)/3d0) + zp**3*(-((pi**2)/54d0) -
|
|
& 8d0/9d0 + (pi**2*llzp)/18d0 + (5d0*llzp)/12d0 + (2d0*z
|
|
&eta3)/3d0) + zp**8*(-((pi**2)/384d0) - 127203607d0/3951
|
|
&36000d0 + (266681d0*llzp)/1411200d0 + (pi**2*llzp)/48d0
|
|
& + (zeta3)/4d0) + zp**5*(-((pi**2)/150d0) - 2281d0/4320
|
|
&d0 + (pi**2*llzp)/30d0 + (41d0*llzp)/144d0 + (2d0*zeta3
|
|
&)/5d0) + zp**7*(-((pi**2)/294d0) - 93371d0/252000d0 + (
|
|
&pi**2*llzp)/42d0 + (767d0*llzp)/3600d0 + (2d0*zeta3)/7d
|
|
&0) + zp**9*(-((pi**2)/486d0) - 2276013631d0/8001504000d
|
|
&0 + (pi**2*llzp)/54d0 + (1077749d0*llzp)/6350400d0 + (2
|
|
&d0*zeta3)/9d0)
|
|
|
|
case(32) !0-100
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/20d0 + 2*myi*pi*szp*zeta3 + z
|
|
&p*(-((pi**2)/2d0) - (myi*pi**3*szp)/6d0 + (pi**2*llzp)/
|
|
&2d0 + zeta3) + zp**2*(-((pi**2)/8d0) - (myi*pi**3*szp)/
|
|
&12d0 + (myi*pi*szp)/2d0 + (pi**2*llzp)/4d0 + (zeta3)/2d
|
|
&0) + zp**3*(-(1d0/12d0) - (pi**2)/18d0 - (myi*pi**3*szp
|
|
&)/18d0 + (myi*pi*5d0*szp)/12d0 + (pi**2*llzp)/6d0 + (ze
|
|
&ta3)/3d0) + zp**4*(-((pi**2)/32d0) - 5d0/48d0 - (myi*pi
|
|
&**3*szp)/24d0 + (myi*pi*49d0*szp)/144d0 + (pi**2*llzp)/
|
|
&8d0 + (zeta3)/4d0) + zp**5*(-(17d0/160d0) - (pi**2)/50d
|
|
&0 - (myi*pi**3*szp)/30d0 + (myi*pi*41d0*szp)/144d0 + (p
|
|
&i**2*llzp)/10d0 + (zeta3)/5d0) + zp**6*(-(59d0/576d0) -
|
|
& (pi**2)/72d0 - (myi*pi**3*szp)/36d0 + (myi*pi*5269d0*s
|
|
&zp)/21600d0 + (pi**2*llzp)/12d0 + (zeta3)/6d0) + zp**7*
|
|
&(-(2929d0/30240d0) - (pi**2)/98d0 - (myi*pi**3*szp)/42d
|
|
&0 + (myi*pi*767d0*szp)/3600d0 + (pi**2*llzp)/14d0 + (ze
|
|
&ta3)/7d0) + zp**8*(-((pi**2)/128d0) - 629d0/6912d0 + (m
|
|
&yi*pi*266681d0*szp)/1411200d0 - (myi*pi**3*szp)/48d0 +
|
|
&(pi**2*llzp)/16d0 + (zeta3)/8d0) + zp**9*(-((pi**2)/162
|
|
&d0) - 185921d0/2177280d0 - (myi*pi**3*szp)/54d0 + (myi*
|
|
&pi*1077749d0*szp)/6350400d0 + (pi**2*llzp)/18d0 + (zeta
|
|
&3)/9d0)
|
|
|
|
case(33) !0-101
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4*71d0)/1440d0 + (pi**2*ll2**2)/
|
|
&6d0 - (ll2**4)/6d0 - 4*cli4pt5 - (7d0*ll2*zeta3)/2d0 +
|
|
&zp**2*(-((pi**2)/48d0) - (ll2)/2d0 + (pi**2*llzp)/24d0
|
|
&+ (5d0*zeta3)/16d0) + zp**3*(-((pi**2)/108d0) + 1d0/24d
|
|
&0 - (5d0*ll2)/12d0 + (pi**2*llzp)/36d0 + (5d0*zeta3)/24
|
|
&d0) + zp**4*(-((pi**2)/192d0) + 7d0/144d0 - (49d0*ll2)/
|
|
&144d0 + (pi**2*llzp)/48d0 + (5d0*zeta3)/32d0) + zp**6*(
|
|
&-((pi**2)/432d0) + 3793d0/86400d0 - (5269d0*ll2)/21600d
|
|
&0 + (pi**2*llzp)/72d0 + (5d0*zeta3)/48d0) + zp**7*(4882
|
|
&1d0/1209600d0 - (pi**2)/588d0 - (767d0*ll2)/3600d0 + (p
|
|
&i**2*llzp)/84d0 + (5d0*zeta3)/56d0) + zp**8*(2511659d0/
|
|
&67737600d0 - (pi**2)/768d0 - (266681d0*ll2)/1411200d0 +
|
|
& (pi**2*llzp)/96d0 + (5d0*zeta3)/64d0) + zp**9*(1041298
|
|
&1d0/304819200d0 - (pi**2)/972d0 - (1077749d0*ll2)/63504
|
|
&00d0 + (pi**2*llzp)/108d0 + (5d0*zeta3)/72d0) + zp**5*(
|
|
&-((pi**2)/300d0) + 17d0/360d0 - (41d0*ll2)/144d0 + (pi*
|
|
&*2*llzp)/60d0 + (zeta3)/8d0) + zp*(-((pi**2)/12d0) + (p
|
|
&i**2*llzp)/12d0 + (5d0*zeta3)/8d0)
|
|
|
|
case(34) !0-11-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*7d0)/288d0) + (pi**2*ll2**2)
|
|
&/8d0 + (ll2**4)/8d0 + 3*cli4pt5 + zp**7*((pi**2)/588d0
|
|
&+ 14001083d0/84672000d0 + (pi**2*ll2)/42d0 - (ll2**2)/9
|
|
&8d0 - (ll2**3)/21d0 - (5587d0*llzp)/67200d0 - (pi**2*ll
|
|
&zp)/84d0 + (ll2**2*llzp)/14d0 - (zeta3)/4d0) + zp**3*((
|
|
&pi**2)/108d0 + 5d0/12d0 + (pi**2*ll2)/18d0 - (ll2**2)/1
|
|
&8d0 - (ll2**3)/9d0 - (pi**2*llzp)/36d0 - (3d0*llzp)/16d
|
|
&0 + (ll2**2*llzp)/6d0 - (7d0*zeta3)/12d0) + zp**4*((pi*
|
|
&*2)/192d0 + 2101d0/6912d0 + (pi**2*ll2)/24d0 - (ll2**2)
|
|
&/32d0 - (ll2**3)/12d0 - (pi**2*llzp)/48d0 - (83d0*llzp)
|
|
&/576d0 + (ll2**2*llzp)/8d0 - (7d0*zeta3)/16d0) + zp**5*
|
|
&((pi**2)/300d0 + 82237d0/345600d0 + (pi**2*ll2)/30d0 -
|
|
&(ll2**2)/50d0 - (ll2**3)/15d0 - (1337d0*llzp)/11520d0 -
|
|
& (pi**2*llzp)/60d0 + (ll2**2*llzp)/10d0 - (7d0*zeta3)/2
|
|
&0d0) + zp**6*((pi**2)/432d0 + 505931d0/2592000d0 + (pi*
|
|
&*2*ll2)/36d0 - (ll2**2)/72d0 - (ll2**3)/18d0 - (33497d0
|
|
&*llzp)/345600d0 - (pi**2*llzp)/72d0 + (ll2**2*llzp)/12d
|
|
&0 - (7d0*zeta3)/24d0) + zp**8*(169983053d0/1185408000d0
|
|
& + (pi**2)/768d0 + (pi**2*ll2)/48d0 - (ll2**2)/128d0 -
|
|
&(ll2**3)/24d0 - (136919d0*llzp)/1881600d0 - (pi**2*llzp
|
|
&)/96d0 + (ll2**2*llzp)/16d0 - (7d0*zeta3)/32d0) + zp**9
|
|
&*(86419598141d0/682795008000d0 + (pi**2)/972d0 + (pi**2
|
|
&*ll2)/54d0 - (ll2**2)/162d0 - (ll2**3)/27d0 - (pi**2*ll
|
|
&zp)/108d0 - (35054939d0*llzp)/541900800d0 + (ll2**2*llz
|
|
&p)/18d0 - (7d0*zeta3)/36d0) + zp*((pi**2)/12d0 + (pi**2
|
|
&*ll2)/6d0 - (ll2**2)/2d0 - (ll2**3)/3d0 - (pi**2*llzp)/
|
|
&12d0 + (ll2**2*llzp)/2d0 - (7d0*zeta3)/4d0) + zp**2*((p
|
|
&i**2)/48d0 + 5d0/8d0 + (pi**2*ll2)/12d0 - (ll2**2)/8d0
|
|
&- (ll2**3)/6d0 - (pi**2*llzp)/24d0 - (llzp)/4d0 + (ll2*
|
|
&*2*llzp)/4d0 - (7d0*zeta3)/8d0)
|
|
|
|
case(35) !0-110
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*11d0)/480d0) + (myi*pi**3*sz
|
|
&p*ll2)/4d0 - (pi**2*ll2**2)/6d0 + (ll2**4)/6d0 + 4*cli4
|
|
&pt5 - myi*pi*szp*zeta3 + zp**2*((pi**2)/48d0 + (myi*pi*
|
|
&*3*szp)/24d0 - (myi*pi*szp)/4d0 + (pi**2*ll2)/8d0 - (my
|
|
&i*pi*szp*ll2)/4d0 - (myi*pi*szp*ll2**2)/4d0 - (pi**2*ll
|
|
&zp)/24d0 + (myi*pi*szp*ll2*llzp)/2d0 - (13d0*zeta3)/16d
|
|
&0) + zp**3*((pi**2)/108d0 + 1d0/24d0 + (myi*pi**3*szp)/
|
|
&36d0 - (myi*pi*3d0*szp)/16d0 + (pi**2*ll2)/12d0 - (myi*
|
|
&pi*szp*ll2)/9d0 - (myi*pi*szp*ll2**2)/6d0 - (pi**2*llzp
|
|
&)/36d0 + (myi*pi*szp*ll2*llzp)/3d0 - (13d0*zeta3)/24d0)
|
|
& + zp**4*((pi**2)/192d0 + 13d0/288d0 + (myi*pi**3*szp)/
|
|
&48d0 - (myi*pi*83d0*szp)/576d0 + (pi**2*ll2)/16d0 - (my
|
|
&i*pi*szp*ll2)/16d0 - (myi*pi*szp*ll2**2)/8d0 - (pi**2*l
|
|
&lzp)/48d0 + (myi*pi*szp*ll2*llzp)/4d0 - (13d0*zeta3)/32
|
|
&d0) + zp**5*(119d0/2880d0 + (pi**2)/300d0 - (myi*pi*133
|
|
&7d0*szp)/11520d0 + (myi*pi**3*szp)/60d0 + (pi**2*ll2)/2
|
|
&0d0 - (myi*pi*szp*ll2)/25d0 - (myi*pi*szp*ll2**2)/10d0
|
|
&- (pi**2*llzp)/60d0 + (myi*pi*szp*ll2*llzp)/5d0 - (13d0
|
|
&*zeta3)/40d0) + zp**6*((pi**2)/432d0 + 3167d0/86400d0 -
|
|
& (myi*pi*33497d0*szp)/345600d0 + (myi*pi**3*szp)/72d0 +
|
|
& (pi**2*ll2)/24d0 - (myi*pi*szp*ll2)/36d0 - (myi*pi*szp
|
|
&*ll2**2)/12d0 - (pi**2*llzp)/72d0 + (myi*pi*szp*ll2*llz
|
|
&p)/6d0 - (13d0*zeta3)/48d0) + zp**7*(1403d0/43200d0 + (
|
|
&pi**2)/588d0 - (myi*pi*5587d0*szp)/67200d0 + (myi*pi**3
|
|
&*szp)/84d0 + (pi**2*ll2)/28d0 - (myi*pi*szp*ll2)/49d0 -
|
|
& (myi*pi*szp*ll2**2)/14d0 - (pi**2*llzp)/84d0 + (myi*pi
|
|
&*szp*ll2*llzp)/7d0 - (13d0*zeta3)/56d0) + zp**8*(490589
|
|
&d0/16934400d0 + (pi**2)/768d0 - (myi*pi*136919d0*szp)/1
|
|
&881600d0 + (myi*pi**3*szp)/96d0 + (pi**2*ll2)/32d0 - (m
|
|
&yi*pi*szp*ll2)/64d0 - (myi*pi*szp*ll2**2)/16d0 - (pi**2
|
|
&*llzp)/96d0 + (myi*pi*szp*ll2*llzp)/8d0 - (13d0*zeta3)/
|
|
&64d0) + zp**9*(3972277d0/152409600d0 + (pi**2)/972d0 +
|
|
&(myi*pi**3*szp)/108d0 - (myi*pi*35054939d0*szp)/5419008
|
|
&00d0 + (pi**2*ll2)/36d0 - (myi*pi*szp*ll2)/81d0 - (myi*
|
|
&pi*szp*ll2**2)/18d0 - (pi**2*llzp)/108d0 + (myi*pi*szp*
|
|
&ll2*llzp)/9d0 - (13d0*zeta3)/72d0) + zp*((pi**2)/12d0 +
|
|
& (myi*pi**3*szp)/12d0 + (pi**2*ll2)/4d0 - myi*pi*szp*ll
|
|
&2 - (myi*pi*szp*ll2**2)/2d0 - (pi**2*llzp)/12d0 + myi*p
|
|
&i*szp*ll2*llzp - (13d0*zeta3)/8d0)
|
|
|
|
case(36) !0-111
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*7d0)/288d0) - (pi**2*5d0*ll2
|
|
&**2)/24d0 + (ll2**4)/12d0 + 2*cli4pt5 + (21d0*ll2*zeta3
|
|
&)/8d0 + zp**2*(-((pi**2*ll2)/24d0) + (ll2)/4d0 + (ll2**
|
|
&2)/8d0 + (ll2**3)/6d0 - (ll2**2*llzp)/4d0 + (zeta3)/16d
|
|
&0) + zp**3*(-(1d0/48d0) - (pi**2*ll2)/36d0 + (3d0*ll2)/
|
|
&16d0 + (ll2**2)/18d0 + (ll2**3)/9d0 - (ll2**2*llzp)/6d0
|
|
& + (zeta3)/24d0) + zp**4*(-(1d0/48d0) - (pi**2*ll2)/48d
|
|
&0 + (83d0*ll2)/576d0 + (ll2**2)/32d0 + (ll2**3)/12d0 -
|
|
&(ll2**2*llzp)/8d0 + (zeta3)/32d0) + zp**5*(-(139d0/7680
|
|
&d0) + (1337d0*ll2)/11520d0 - (pi**2*ll2)/60d0 + (ll2**2
|
|
&)/50d0 + (ll2**3)/15d0 - (ll2**2*llzp)/10d0 + (zeta3)/4
|
|
&0d0) + zp**6*(-(143d0/9216d0) + (33497d0*ll2)/345600d0
|
|
&- (pi**2*ll2)/72d0 + (ll2**2)/72d0 + (ll2**3)/18d0 - (l
|
|
&l2**2*llzp)/12d0 + (zeta3)/48d0) + zp**7*(-(13007d0/967
|
|
&680d0) + (5587d0*ll2)/67200d0 - (pi**2*ll2)/84d0 + (ll2
|
|
&**2)/98d0 + (ll2**3)/21d0 - (ll2**2*llzp)/14d0 + (zeta3
|
|
&)/56d0) + zp**8*(-(13061d0/1105920d0) + (136919d0*ll2)/
|
|
&1881600d0 - (pi**2*ll2)/96d0 + (ll2**2)/128d0 + (ll2**3
|
|
&)/24d0 - (ll2**2*llzp)/16d0 + (zeta3)/64d0) + zp**9*(-(
|
|
&5861129d0/557383680d0) - (pi**2*ll2)/108d0 + (35054939d
|
|
&0*ll2)/541900800d0 + (ll2**2)/162d0 + (ll2**3)/27d0 - (
|
|
&ll2**2*llzp)/18d0 + (zeta3)/72d0) + zp*(-((pi**2*ll2)/1
|
|
&2d0) + (ll2**2)/2d0 + (ll2**3)/3d0 - (ll2**2*llzp)/2d0
|
|
&+ (zeta3)/8d0)
|
|
|
|
case(37) !00-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/360d0 - zp*zeta3 + zp**2*(7d0
|
|
&/8d0 - (3d0*llzp)/4d0 + (llzp**2)/4d0 - (zeta3)/2d0) +
|
|
&zp**3*(41d0/72d0 - (7d0*llzp)/12d0 + (llzp**2)/4d0 - (z
|
|
&eta3)/3d0) + zp**4*(1397d0/3456d0 - (131d0*llzp)/288d0
|
|
&+ (11d0*llzp**2)/48d0 - (zeta3)/4d0) + zp**5*(2671d0/86
|
|
&40d0 - (53d0*llzp)/144d0 + (5d0*llzp**2)/24d0 - (zeta3)
|
|
&/5d0) + zp**6*(322493d0/1296000d0 - (2213d0*llzp)/7200d
|
|
&0 + (137d0*llzp**2)/720d0 - (zeta3)/6d0) + zp**7*(10464
|
|
&1d0/504000d0 - (947d0*llzp)/3600d0 + (7d0*llzp**2)/40d0
|
|
& - (zeta3)/7d0) + zp**8*(140539517d0/790272000d0 - (647
|
|
&707d0*llzp)/2822400d0 + (363d0*llzp**2)/2240d0 - (zeta3
|
|
&)/8d0) + zp**9*(2486560891d0/16003008000d0 - (1290829d0
|
|
&*llzp)/6350400d0 + (761d0*llzp**2)/5040d0 - (zeta3)/9d0
|
|
&)
|
|
|
|
case(38) !00-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/30d0 + zp*((myi*pi**3*szp)/6d
|
|
&0 - 2*zeta3) + zp**2*((pi**2)/12d0 + (myi*pi**3*szp)/12
|
|
&d0 - (myi*pi*3d0*szp)/4d0 + (myi*pi*szp*llzp)/2d0 - zet
|
|
&a3) - myi*pi*szp*zeta3 + zp**4*((pi**2*11d0)/144d0 - 11
|
|
&d0/48d0 + (myi*pi**3*szp)/24d0 - (myi*pi*131d0*szp)/288
|
|
&d0 + (myi*pi*11d0*szp*llzp)/24d0 - (zeta3)/2d0) + zp**6
|
|
&*((pi**2*137d0)/2160d0 - 37d0/144d0 + (myi*pi**3*szp)/3
|
|
&6d0 - (myi*pi*2213d0*szp)/7200d0 + (myi*pi*137d0*szp*ll
|
|
&zp)/360d0 - (zeta3)/3d0) + zp**3*((pi**2)/12d0 - 1d0/6d
|
|
&0 + (myi*pi**3*szp)/18d0 - (myi*pi*7d0*szp)/12d0 + (myi
|
|
&*pi*szp*llzp)/2d0 - (2d0*zeta3)/3d0) + zp**8*((pi**2*12
|
|
&1d0)/2240d0 - 43171d0/172800d0 + (myi*pi**3*szp)/48d0 -
|
|
& (myi*pi*647707d0*szp)/2822400d0 + (myi*pi*363d0*szp*ll
|
|
&zp)/1120d0 - (zeta3)/4d0) + zp**5*(-(181d0/720d0) + (pi
|
|
&**2*5d0)/72d0 + (myi*pi**3*szp)/30d0 - (myi*pi*53d0*szp
|
|
&)/144d0 + (myi*pi*5d0*szp*llzp)/12d0 - (2d0*zeta3)/5d0)
|
|
& + zp**7*(-(38569d0/151200d0) + (pi**2*7d0)/120d0 + (my
|
|
&i*pi**3*szp)/42d0 - (myi*pi*947d0*szp)/3600d0 + (myi*pi
|
|
&*7d0*szp*llzp)/20d0 - (2d0*zeta3)/7d0) + zp**9*((pi**2*
|
|
&761d0)/15120d0 - 9261559d0/38102400d0 + (myi*pi**3*szp)
|
|
&/54d0 - (myi*pi*1290829d0*szp)/6350400d0 + (myi*pi*761d
|
|
&0*szp*llzp)/2520d0 - (2d0*zeta3)/9d0)
|
|
|
|
case(39) !00-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*19d0)/1440d0) + (7d0*ll2*zet
|
|
&a3)/4d0 + zp*(-((pi**2*ll2)/4d0) + zeta3) + zp**2*(-((p
|
|
&i**2)/24d0) + (3d0*ll2)/4d0 - (pi**2*ll2)/8d0 + (ll2**2
|
|
&)/4d0 - (ll2*llzp)/2d0 + (zeta3)/2d0) + zp**3*(1d0/12d0
|
|
& - (pi**2)/24d0 - (pi**2*ll2)/12d0 + (7d0*ll2)/12d0 + (
|
|
&ll2**2)/4d0 - (ll2*llzp)/2d0 + (zeta3)/3d0) + zp**4*(-(
|
|
&(pi**2*11d0)/288d0) + 7d0/64d0 - (pi**2*ll2)/16d0 + (13
|
|
&1d0*ll2)/288d0 + (11d0*ll2**2)/48d0 - (11d0*ll2*llzp)/2
|
|
&4d0 + (zeta3)/4d0) + zp**5*(-((pi**2*5d0)/144d0) + 67d0
|
|
&/576d0 - (pi**2*ll2)/20d0 + (53d0*ll2)/144d0 + (5d0*ll2
|
|
&**2)/24d0 - (5d0*ll2*llzp)/12d0 + (zeta3)/5d0) + zp**6*
|
|
&(-((pi**2*137d0)/4320d0) + 893d0/7680d0 - (pi**2*ll2)/2
|
|
&4d0 + (2213d0*ll2)/7200d0 + (137d0*ll2**2)/720d0 - (137
|
|
&d0*ll2*llzp)/360d0 + (zeta3)/6d0) + zp**7*(274607d0/241
|
|
&9200d0 - (pi**2*7d0)/240d0 - (pi**2*ll2)/28d0 + (947d0*
|
|
&ll2)/3600d0 + (7d0*ll2**2)/40d0 - (7d0*ll2*llzp)/20d0 +
|
|
& (zeta3)/7d0) + zp**8*(2123381d0/19353600d0 - (pi**2*12
|
|
&1d0)/4480d0 - (pi**2*ll2)/32d0 + (647707d0*ll2)/2822400
|
|
&d0 + (363d0*ll2**2)/2240d0 - (363d0*ll2*llzp)/1120d0 +
|
|
&(zeta3)/8d0) + zp**9*(-((pi**2*761d0)/30240d0) + 804796
|
|
&9d0/76204800d0 - (pi**2*ll2)/36d0 + (1290829d0*ll2)/635
|
|
&0400d0 + (761d0*ll2**2)/5040d0 - (761d0*ll2*llzp)/2520d
|
|
&0 + (zeta3)/9d0)
|
|
|
|
case(40) !000-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/90d0) + zp*zeta3 + zp**2*(-
|
|
&((pi**2)/12d0) + (zeta3)/2d0) + zp**3*(-((pi**2)/12d0)
|
|
&+ 11d0/36d0 - (llzp)/6d0 + (zeta3)/3d0) + zp**4*(-((pi*
|
|
&*2*11d0)/144d0) + 19d0/48d0 - (llzp)/4d0 + (zeta3)/4d0)
|
|
& + zp**5*(599d0/1440d0 - (pi**2*5d0)/72d0 - (7d0*llzp)/
|
|
&24d0 + (zeta3)/5d0) + zp**6*(-((pi**2*137d0)/2160d0) +
|
|
&79d0/192d0 - (5d0*llzp)/16d0 + (zeta3)/6d0) + zp**7*(-(
|
|
&(pi**2*7d0)/120d0) + 3343d0/8400d0 - (29d0*llzp)/90d0 +
|
|
& (zeta3)/7d0) + zp**8*(-((pi**2*121d0)/2240d0) + 21977d
|
|
&0/57600d0 - (469d0*llzp)/1440d0 + (zeta3)/8d0) + zp**9*
|
|
&(-((pi**2*761d0)/15120d0) + 83359739d0/228614400d0 - (2
|
|
&9531d0*llzp)/90720d0 + (zeta3)/9d0)
|
|
|
|
case(41) !0000
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/24d0 + (myi*pi**3*szp*zp)/6d0
|
|
& + (-((pi**2)/4d0) + (myi*pi**3*szp)/12d0)*zp**2 + (-((
|
|
&pi**2)/4d0) + (myi*pi**3*szp)/18d0 - (myi*pi*szp)/6d0)*
|
|
&zp**3 + (1d0/24d0 - (pi**2*11d0)/48d0 + (myi*pi**3*szp)
|
|
&/24d0 - (myi*pi*szp)/4d0)*zp**4 + (1d0/12d0 - (pi**2*5d
|
|
&0)/24d0 + (myi*pi**3*szp)/30d0 - (myi*pi*7d0*szp)/24d0)
|
|
&*zp**5 + (17d0/144d0 - (pi**2*137d0)/720d0 + (myi*pi**3
|
|
&*szp)/36d0 - (myi*pi*5d0*szp)/16d0)*zp**6 + (-((pi**2*7
|
|
&d0)/40d0) + 7d0/48d0 + (myi*pi**3*szp)/42d0 - (myi*pi*2
|
|
&9d0*szp)/90d0)*zp**7 + (-((pi**2*363d0)/2240d0) + 967d0
|
|
&/5760d0 - (myi*pi*469d0*szp)/1440d0 + (myi*pi**3*szp)/4
|
|
&8d0)*zp**8 + (-((pi**2*761d0)/5040d0) + 89d0/480d0 + (m
|
|
&yi*pi**3*szp)/54d0 - (myi*pi*29531d0*szp)/90720d0)*zp**
|
|
&9
|
|
|
|
case(42) !0001
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((pi**4*7d0)/720d0) + (3d0*zp*zeta3)
|
|
&/4d0 + zp**9*(-(112391d0/1451520d0) - (pi**2*761d0)/302
|
|
&40d0 + (29531d0*ll2)/90720d0 + (zeta3)/12d0) + zp**4*(-
|
|
&((pi**2*11d0)/288d0) - 1d0/48d0 + (ll2)/4d0 + (3d0*zeta
|
|
&3)/16d0) + zp**5*(-(19d0/480d0) - (pi**2*5d0)/144d0 + (
|
|
&7d0*ll2)/24d0 + (3d0*zeta3)/20d0) + zp**7*(-(2591d0/403
|
|
&20d0) - (pi**2*7d0)/240d0 + (29d0*ll2)/90d0 + (3d0*zeta
|
|
&3)/28d0) + zp**8*(-(23d0/320d0) - (pi**2*121d0)/4480d0
|
|
&+ (469d0*ll2)/1440d0 + (3d0*zeta3)/32d0) + zp**3*(-((pi
|
|
&**2)/24d0) + (ll2)/6d0 + (zeta3)/4d0) + zp**6*(-((pi**2
|
|
&*137d0)/4320d0) - 31d0/576d0 + (5d0*ll2)/16d0 + (zeta3)
|
|
&/8d0) + zp**2*(-((pi**2)/24d0) + (3d0*zeta3)/8d0)
|
|
|
|
case(43) !001-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/180d0) - (pi**2*ll2**2)/12d
|
|
&0 + (ll2**4)/12d0 + 2*cli4pt5 + zp**2*((pi**2)/24d0 + (
|
|
&pi**2*ll2)/8d0 - (ll2**2)/4d0 - (13d0*zeta3)/16d0) + zp
|
|
&**3*((pi**2)/24d0 - 11d0/72d0 + (pi**2*ll2)/12d0 - (ll2
|
|
&**2)/4d0 + (llzp)/12d0 - (13d0*zeta3)/24d0) + zp**4*(-(
|
|
&215d0/1152d0) + (pi**2*11d0)/288d0 + (pi**2*ll2)/16d0 -
|
|
& (11d0*ll2**2)/48d0 + (11d0*llzp)/96d0 - (13d0*zeta3)/3
|
|
&2d0) + zp**5*((pi**2*5d0)/144d0 - 181d0/960d0 + (pi**2*
|
|
&ll2)/20d0 - (5d0*ll2**2)/24d0 + (llzp)/8d0 - (13d0*zeta
|
|
&3)/40d0) + zp**6*(-(2321d0/12800d0) + (pi**2*137d0)/432
|
|
&0d0 + (pi**2*ll2)/24d0 - (137d0*ll2**2)/720d0 + (731d0*
|
|
&llzp)/5760d0 - (13d0*zeta3)/48d0) + zp**7*((pi**2*7d0)/
|
|
&240d0 - 138503d0/806400d0 + (pi**2*ll2)/28d0 - (7d0*ll2
|
|
&**2)/40d0 + (721d0*llzp)/5760d0 - (13d0*zeta3)/56d0) +
|
|
&zp**8*(-(182923d0/1128960d0) + (pi**2*121d0)/4480d0 + (
|
|
&pi**2*ll2)/32d0 - (363d0*ll2**2)/2240d0 + (3931d0*llzp)
|
|
&/32256d0 - (13d0*zeta3)/64d0) + zp**9*((pi**2*761d0)/30
|
|
&240d0 - 139798291d0/914457600d0 + (pi**2*ll2)/36d0 - (7
|
|
&61d0*ll2**2)/5040d0 + (42799d0*llzp)/362880d0 - (13d0*z
|
|
&eta3)/72d0) + zp*((pi**2*ll2)/4d0 - (13d0*zeta3)/8d0)
|
|
|
|
case(44) !0010
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*7d0)/240d0 - (myi*pi*3d0*szp*z
|
|
&eta3)/4d0 + zp**3*((pi**2)/24d0 + (myi*pi*szp)/12d0 + (
|
|
&myi*pi**3*szp)/36d0 - (myi*pi*szp*ll2)/2d0 - (zeta3)/2d
|
|
&0) + zp**5*((pi**2*5d0)/144d0 - 3d0/80d0 + (myi*pi**3*s
|
|
&zp)/60d0 + (myi*pi*szp)/8d0 - (myi*pi*5d0*szp*ll2)/12d0
|
|
& - (3d0*zeta3)/10d0) + zp**7*(-(187d0/3360d0) + (pi**2*
|
|
&7d0)/240d0 + (myi*pi*721d0*szp)/5760d0 + (myi*pi**3*szp
|
|
&)/84d0 - (myi*pi*7d0*szp*ll2)/20d0 - (3d0*zeta3)/14d0)
|
|
&+ zp**8*((pi**2*121d0)/4480d0 - 691d0/11520d0 + (myi*pi
|
|
&*3931d0*szp)/32256d0 + (myi*pi**3*szp)/96d0 - (myi*pi*3
|
|
&63d0*szp*ll2)/1120d0 - (3d0*zeta3)/16d0) + zp*((myi*pi*
|
|
&*3*szp)/12d0 - (3d0*zeta3)/2d0) + zp**6*((pi**2*137d0)/
|
|
&4320d0 - 7d0/144d0 + (myi*pi**3*szp)/72d0 + (myi*pi*731
|
|
&d0*szp)/5760d0 - (myi*pi*137d0*szp*ll2)/360d0 - (zeta3)
|
|
&/4d0) + zp**2*((pi**2)/24d0 + (myi*pi**3*szp)/24d0 - (m
|
|
&yi*pi*szp*ll2)/2d0 - (3d0*zeta3)/4d0) + zp**9*(-(2521d0
|
|
&/40320d0) + (pi**2*761d0)/30240d0 + (myi*pi**3*szp)/108
|
|
&d0 + (myi*pi*42799d0*szp)/362880d0 - (myi*pi*761d0*szp*
|
|
&ll2)/2520d0 - (zeta3)/6d0) + zp**4*((pi**2*11d0)/288d0
|
|
&- 1d0/48d0 + (myi*pi**3*szp)/48d0 + (myi*pi*11d0*szp)/9
|
|
&6d0 - (myi*pi*11d0*szp*ll2)/24d0 - (3d0*zeta3)/8d0)
|
|
|
|
case(45) !0011
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((pi**4)/48d0) - (pi**2*ll2**2)/12d0
|
|
& + (ll2**4)/12d0 + 2*cli4pt5 - (zp*zeta3)/8d0 + (7d0*ll
|
|
&2*zeta3)/4d0 + zp**2*((ll2**2)/4d0 - (zeta3)/16d0) + zp
|
|
&**3*(-((ll2)/12d0) + (ll2**2)/4d0 - (zeta3)/24d0) + zp*
|
|
&*4*(1d0/96d0 - (11d0*ll2)/96d0 + (11d0*ll2**2)/48d0 - (
|
|
&zeta3)/32d0) + zp**5*(17d0/960d0 - (ll2)/8d0 + (5d0*ll2
|
|
&**2)/24d0 - (zeta3)/40d0) + zp**6*(253d0/11520d0 - (731
|
|
&d0*ll2)/5760d0 + (137d0*ll2**2)/720d0 - (zeta3)/48d0) +
|
|
& zp**7*(979d0/40320d0 - (721d0*ll2)/5760d0 + (7d0*ll2**
|
|
&2)/40d0 - (zeta3)/56d0) + zp**8*(10943d0/430080d0 - (39
|
|
&31d0*ll2)/32256d0 + (363d0*ll2**2)/2240d0 - (zeta3)/64d
|
|
&0) + zp**9*(4703d0/181440d0 - (42799d0*ll2)/362880d0 +
|
|
&(761d0*ll2**2)/5040d0 - (zeta3)/72d0)
|
|
|
|
case(46) !01-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4*11d0)/720d0 - (ll2**4)/8d0 - 3
|
|
&*cli4pt5 + zp**2*(-(7d0/16d0) - (pi**2*ll2)/24d0 + (ll2
|
|
&**3)/12d0 + (3d0*llzp)/8d0 - (llzp**2)/8d0 + (7d0*zeta3
|
|
&)/16d0) + zp**3*(-(227d0/864d0) - (pi**2*ll2)/36d0 + (l
|
|
&l2**3)/18d0 + (37d0*llzp)/144d0 - (5d0*llzp**2)/48d0 +
|
|
&(7d0*zeta3)/24d0) + zp**4*(-(1247d0/6912d0) - (pi**2*ll
|
|
&2)/48d0 + (ll2**3)/24d0 + (107d0*llzp)/576d0 - (llzp**2
|
|
&)/12d0 + (7d0*zeta3)/32d0) + zp**5*(-(470159d0/3456000d
|
|
&0) - (pi**2*ll2)/60d0 + (ll2**3)/30d0 + (8257d0*llzp)/5
|
|
&7600d0 - (131d0*llzp**2)/1920d0 + (7d0*zeta3)/40d0) + z
|
|
&p**6*(-(2257309d0/20736000d0) - (pi**2*ll2)/72d0 + (ll2
|
|
&**3)/36d0 + (13369d0*llzp)/115200d0 - (661d0*llzp**2)/1
|
|
&1520d0 + (7d0*zeta3)/48d0) + zp**8*(-(183970943d0/23708
|
|
&16000d0) - (pi**2*ll2)/96d0 + (ll2**3)/48d0 + (314543d0
|
|
&*llzp)/3763200d0 - (1163d0*llzp**2)/26880d0 + (7d0*zeta
|
|
&3)/64d0) + zp**9*(-(833624776009d0/12290310144000d0) -
|
|
&(pi**2*ll2)/108d0 + (ll2**3)/54d0 + (357205771d0*llzp)/
|
|
&4877107200d0 - (148969d0*llzp**2)/3870720d0 + (7d0*zeta
|
|
&3)/72d0) + zp**7*(-(107435801d0/1185408000d0) - (pi**2*
|
|
&ll2)/84d0 + (ll2**3)/42d0 + (953d0*llzp)/9800d0 - (1327
|
|
&d0*llzp**2)/26880d0 + (zeta3)/8d0) + zp*(-((pi**2*ll2)/
|
|
&12d0) + (ll2**3)/6d0 + (7d0*zeta3)/8d0)
|
|
|
|
case(47) !01-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*13d0)/1440d0 - (myi*pi**3*szp*
|
|
&ll2)/4d0 + (pi**2*ll2**2)/6d0 - (ll2**4)/6d0 - 4*cli4pt
|
|
&5 + (myi*pi*13d0*szp*zeta3)/8d0 + zp*(-((myi*pi**3*szp)
|
|
&/12d0) - (pi**2*ll2)/12d0 + (myi*pi*szp*ll2**2)/2d0 + z
|
|
&eta3) + zp**2*(-((pi**2)/24d0) - (myi*pi**3*szp)/24d0 +
|
|
& (myi*pi*3d0*szp)/8d0 - (pi**2*ll2)/24d0 + (myi*pi*szp*
|
|
&ll2**2)/4d0 - (myi*pi*szp*llzp)/4d0 + (zeta3)/2d0) + zp
|
|
&**3*(1d0/12d0 - (pi**2*5d0)/144d0 - (myi*pi**3*szp)/36d
|
|
&0 + (myi*pi*37d0*szp)/144d0 - (pi**2*ll2)/36d0 + (myi*p
|
|
&i*szp*ll2**2)/6d0 - (myi*pi*5d0*szp*llzp)/24d0 + (zeta3
|
|
&)/3d0) + zp**4*(-((pi**2)/36d0) + 3d0/32d0 - (myi*pi**3
|
|
&*szp)/48d0 + (myi*pi*107d0*szp)/576d0 - (pi**2*ll2)/48d
|
|
&0 + (myi*pi*szp*ll2**2)/8d0 - (myi*pi*szp*llzp)/6d0 + (
|
|
&zeta3)/4d0) + zp**5*(251d0/2880d0 - (pi**2*131d0)/5760d
|
|
&0 - (myi*pi**3*szp)/60d0 + (myi*pi*8257d0*szp)/57600d0
|
|
&- (pi**2*ll2)/60d0 + (myi*pi*szp*ll2**2)/10d0 - (myi*pi
|
|
&*131d0*szp*llzp)/960d0 + (zeta3)/5d0) + zp**6*(1343d0/1
|
|
&7280d0 - (pi**2*661d0)/34560d0 + (myi*pi*13369d0*szp)/1
|
|
&15200d0 - (myi*pi**3*szp)/72d0 - (pi**2*ll2)/72d0 + (my
|
|
&i*pi*szp*ll2**2)/12d0 - (myi*pi*661d0*szp*llzp)/5760d0
|
|
&+ (zeta3)/6d0) + zp**7*(2977d0/43200d0 - (pi**2*1327d0)
|
|
&/80640d0 - (myi*pi**3*szp)/84d0 + (myi*pi*953d0*szp)/98
|
|
&00d0 - (pi**2*ll2)/84d0 + (myi*pi*szp*ll2**2)/14d0 - (m
|
|
&yi*pi*1327d0*szp*llzp)/13440d0 + (zeta3)/7d0) + zp**8*(
|
|
&29711d0/483840d0 - (pi**2*1163d0)/80640d0 + (myi*pi*314
|
|
&543d0*szp)/3763200d0 - (myi*pi**3*szp)/96d0 - (pi**2*ll
|
|
&2)/96d0 + (myi*pi*szp*ll2**2)/16d0 - (myi*pi*1163d0*szp
|
|
&*llzp)/13440d0 + (zeta3)/8d0) + zp**9*(-((pi**2*148969d
|
|
&0)/11612160d0) + 8406389d0/152409600d0 - (myi*pi**3*szp
|
|
&)/108d0 + (myi*pi*357205771d0*szp)/4877107200d0 - (pi**
|
|
&2*ll2)/108d0 + (myi*pi*szp*ll2**2)/18d0 - (myi*pi*14896
|
|
&9d0*szp*llzp)/1935360d0 + (zeta3)/9d0)
|
|
|
|
case(48) !01-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4*7d0)/720d0 + (pi**2*ll2**2)/4d
|
|
&0 - (21d0*ll2*zeta3)/8d0 + zp**3*(-(1d0/24d0) + (pi**2*
|
|
&5d0)/288d0 + (pi**2*ll2)/36d0 - (37d0*ll2)/144d0 - (5d0
|
|
&*ll2**2)/48d0 - (ll2**3)/18d0 + (5d0*ll2*llzp)/24d0 - (
|
|
&zeta3)/12d0) + zp**4*(-(17d0/384d0) + (pi**2)/72d0 + (p
|
|
&i**2*ll2)/48d0 - (107d0*ll2)/576d0 - (ll2**2)/12d0 - (l
|
|
&l2**3)/24d0 + (ll2*llzp)/6d0 - (zeta3)/16d0) + zp**5*((
|
|
&pi**2*131d0)/11520d0 - 457d0/11520d0 + (pi**2*ll2)/60d0
|
|
& - (8257d0*ll2)/57600d0 - (131d0*ll2**2)/1920d0 - (ll2*
|
|
&*3)/30d0 + (131d0*ll2*llzp)/960d0 - (zeta3)/20d0) + zp*
|
|
&*6*((pi**2*661d0)/69120d0 - 955d0/27648d0 - (13369d0*ll
|
|
&2)/115200d0 + (pi**2*ll2)/72d0 - (661d0*ll2**2)/11520d0
|
|
& - (ll2**3)/36d0 + (661d0*ll2*llzp)/5760d0 - (zeta3)/24
|
|
&d0) + zp**7*((pi**2*1327d0)/161280d0 - 291769d0/9676800
|
|
&d0 + (pi**2*ll2)/84d0 - (953d0*ll2)/9800d0 - (1327d0*ll
|
|
&2**2)/26880d0 - (ll2**3)/42d0 + (1327d0*ll2*llzp)/13440
|
|
&d0 - (zeta3)/28d0) + zp**8*((pi**2*1163d0)/161280d0 - 2
|
|
&9407d0/1105920d0 - (314543d0*ll2)/3763200d0 + (pi**2*ll
|
|
&2)/96d0 - (1163d0*ll2**2)/26880d0 - (ll2**3)/48d0 + (11
|
|
&63d0*ll2*llzp)/13440d0 - (zeta3)/32d0) + zp**9*((pi**2*
|
|
&148969d0)/23224320d0 - 231350923d0/9754214400d0 + (pi**
|
|
&2*ll2)/108d0 - (357205771d0*ll2)/4877107200d0 - (148969
|
|
&d0*ll2**2)/3870720d0 - (ll2**3)/54d0 + (148969d0*ll2*ll
|
|
&zp)/1935360d0 - (zeta3)/36d0) + zp*((pi**2*ll2)/12d0 -
|
|
&(ll2**3)/6d0 - (zeta3)/4d0) + zp**2*((pi**2)/48d0 + (pi
|
|
&**2*ll2)/24d0 - (3d0*ll2)/8d0 - (ll2**2)/8d0 - (ll2**3)
|
|
&/12d0 + (ll2*llzp)/4d0 - (zeta3)/8d0)
|
|
|
|
case(49) !010-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/480d0 + zp**2*((pi**2)/24d0 -
|
|
& (pi**2*ll2)/12d0 + (5d0*zeta3)/16d0) + zp**3*((pi**2*5
|
|
&d0)/144d0 - 11d0/72d0 - (pi**2*ll2)/18d0 + (llzp)/12d0
|
|
&+ (5d0*zeta3)/24d0) + zp**4*((pi**2)/36d0 - 95d0/576d0
|
|
&- (pi**2*ll2)/24d0 + (5d0*llzp)/48d0 + (5d0*zeta3)/32d0
|
|
&) + zp**6*((pi**2*661d0)/34560d0 - 941d0/7200d0 - (pi**
|
|
&2*ll2)/36d0 + (47d0*llzp)/480d0 + (5d0*zeta3)/48d0) + z
|
|
&p**7*(-(4d0/35d0) + (pi**2*1327d0)/80640d0 - (pi**2*ll2
|
|
&)/42d0 + (13d0*llzp)/144d0 + (5d0*zeta3)/56d0) + zp**8*
|
|
&(-(1137251d0/11289600d0) + (pi**2*1163d0)/80640d0 - (pi
|
|
&**2*ll2)/48d0 + (3341d0*llzp)/40320d0 + (5d0*zeta3)/64d
|
|
&0) + zp**9*((pi**2*148969d0)/11612160d0 - 20502379d0/22
|
|
&8614400d0 - (pi**2*ll2)/54d0 + (13817d0*llzp)/181440d0
|
|
&+ (5d0*zeta3)/72d0) + zp**5*(-(43d0/288d0) + (pi**2*131
|
|
&d0)/5760d0 - (pi**2*ll2)/30d0 + (5d0*llzp)/48d0 + (zeta
|
|
&3)/8d0) + zp*(-((pi**2*ll2)/6d0) + (5d0*zeta3)/8d0)
|
|
|
|
case(50) !0100
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/80d0 + (myi*pi*3d0*szp*zeta3)
|
|
&/2d0 + zp**9*((pi**2*148969d0)/3870720d0 - 37d0/768d0 +
|
|
& (myi*pi*13817d0*szp)/181440d0 - (myi*pi**3*szp)/108d0
|
|
&- (pi**2*ll2)/18d0 + (zeta3)/12d0) + zp**4*((pi**2)/12d
|
|
&0 - 1d0/48d0 - (myi*pi**3*szp)/48d0 + (myi*pi*5d0*szp)/
|
|
&48d0 - (pi**2*ll2)/8d0 + (3d0*zeta3)/16d0) + zp**5*((pi
|
|
&**2*131d0)/1920d0 - 17d0/480d0 + (myi*pi*5d0*szp)/48d0
|
|
&- (myi*pi**3*szp)/60d0 - (pi**2*ll2)/10d0 + (3d0*zeta3)
|
|
&/20d0) + zp**7*((pi**2*1327d0)/26880d0 - 95d0/2016d0 +
|
|
&(myi*pi*13d0*szp)/144d0 - (myi*pi**3*szp)/84d0 - (pi**2
|
|
&*ll2)/14d0 + (3d0*zeta3)/28d0) + zp**8*((pi**2*1163d0)/
|
|
&26880d0 - 557d0/11520d0 + (myi*pi*3341d0*szp)/40320d0 -
|
|
& (myi*pi**3*szp)/96d0 - (pi**2*ll2)/16d0 + (3d0*zeta3)/
|
|
&32d0) + zp**3*((pi**2*5d0)/48d0 + (myi*pi*szp)/12d0 - (
|
|
&myi*pi**3*szp)/36d0 - (pi**2*ll2)/6d0 + (zeta3)/4d0) +
|
|
&zp*(-((myi*pi**3*szp)/12d0) - (pi**2*ll2)/2d0 + (3d0*ze
|
|
&ta3)/4d0) + zp**6*(-(25d0/576d0) + (pi**2*661d0)/11520d
|
|
&0 + (myi*pi*47d0*szp)/480d0 - (myi*pi**3*szp)/72d0 - (p
|
|
&i**2*ll2)/12d0 + (zeta3)/8d0) + zp**2*((pi**2)/8d0 - (m
|
|
&yi*pi**3*szp)/24d0 - (pi**2*ll2)/4d0 + (3d0*zeta3)/8d0)
|
|
|
|
case(51) !0101
|
|
|
|
zp = x+1d0
|
|
|
|
ris = (pi**4*13d0)/288d0 + (pi**2*ll2**2)/6
|
|
&d0 - (ll2**4)/6d0 - 4*cli4pt5 - (7d0*ll2*zeta3)/2d0 + z
|
|
&p**3*((pi**2*5d0)/288d0 - (ll2)/12d0 - (pi**2*ll2)/36d0
|
|
& + (zeta3)/12d0) + zp**4*((pi**2)/72d0 + 1d0/96d0 - (pi
|
|
&**2*ll2)/48d0 - (5d0*ll2)/48d0 + (zeta3)/16d0) + zp**5*
|
|
&((pi**2*131d0)/11520d0 + 1d0/60d0 - (5d0*ll2)/48d0 - (p
|
|
&i**2*ll2)/60d0 + (zeta3)/20d0) + zp**6*((pi**2*661d0)/6
|
|
&9120d0 + 7d0/360d0 - (47d0*ll2)/480d0 - (pi**2*ll2)/72d
|
|
&0 + (zeta3)/24d0) + zp**7*((pi**2*1327d0)/161280d0 + 10
|
|
&9d0/5376d0 - (13d0*ll2)/144d0 - (pi**2*ll2)/84d0 + (zet
|
|
&a3)/28d0) + zp**8*((pi**2*1163d0)/161280d0 + 12979d0/64
|
|
&5120d0 - (3341d0*ll2)/40320d0 - (pi**2*ll2)/96d0 + (zet
|
|
&a3)/32d0) + zp**9*((pi**2*148969d0)/23224320d0 + 56591d
|
|
&0/2903040d0 - (13817d0*ll2)/181440d0 - (pi**2*ll2)/108d
|
|
&0 + (zeta3)/36d0) + zp*(-((pi**2*ll2)/12d0) + (zeta3)/4
|
|
&d0) + zp**2*((pi**2)/48d0 - (pi**2*ll2)/24d0 + (zeta3)/
|
|
&8d0)
|
|
|
|
case(52) !011-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/80d0 - (pi**2*ll2**2)/24d0 -
|
|
&(ll2**4)/12d0 - 2*cli4pt5 + zp**2*(-((pi**2)/48d0) + (l
|
|
&l2**2)/8d0 - (ll2**3)/12d0 + (zeta3)/16d0) + zp**3*(11d
|
|
&0/144d0 - (pi**2*5d0)/288d0 + (5d0*ll2**2)/48d0 - (ll2*
|
|
&*3)/18d0 - (llzp)/24d0 + (zeta3)/24d0) + zp**4*(-((pi**
|
|
&2)/72d0) + 59d0/768d0 + (ll2**2)/12d0 - (ll2**3)/24d0 -
|
|
& (3d0*llzp)/64d0 + (zeta3)/32d0) + zp**5*(-((pi**2*131d
|
|
&0)/11520d0) + 7651d0/115200d0 + (131d0*ll2**2)/1920d0 -
|
|
& (ll2**3)/30d0 - (83d0*llzp)/1920d0 + (zeta3)/40d0) + z
|
|
&p**6*(65d0/1152d0 - (pi**2*661d0)/69120d0 + (661d0*ll2*
|
|
&*2)/11520d0 - (ll2**3)/36d0 - (11d0*llzp)/288d0 + (zeta
|
|
&3)/48d0) + zp**7*(-((pi**2*1327d0)/161280d0) + 1092631d
|
|
&0/22579200d0 + (1327d0*ll2**2)/26880d0 - (ll2**3)/42d0
|
|
&- (5417d0*llzp)/161280d0 + (zeta3)/56d0) + zp**8*(-((pi
|
|
&**2*1163d0)/161280d0) + 7763d0/184320d0 + (1163d0*ll2**
|
|
&2)/26880d0 - (ll2**3)/48d0 - (137d0*llzp)/4608d0 + (zet
|
|
&a3)/64d0) + zp**9*(-((pi**2*148969d0)/23224320d0) + 217
|
|
&6291643d0/58525286400d0 + (148969d0*ll2**2)/3870720d0 -
|
|
& (ll2**3)/54d0 - (617027d0*llzp)/23224320d0 + (zeta3)/7
|
|
&2d0) + zp*(-((ll2**3)/6d0) + (zeta3)/8d0)
|
|
|
|
case(53) !0110
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4)/288d0) + (myi*pi*szp*zeta3)
|
|
&/8d0 + zp**2*(-((pi**2)/48d0) + (pi**2*ll2)/24d0 + (myi
|
|
&*pi*szp*ll2)/4d0 - (myi*pi*szp*ll2**2)/4d0 - (zeta3)/16
|
|
&d0) + zp**3*(-((pi**2*5d0)/288d0) - (myi*pi*szp)/24d0 +
|
|
& (pi**2*ll2)/36d0 + (myi*pi*5d0*szp*ll2)/24d0 - (myi*pi
|
|
&*szp*ll2**2)/6d0 - (zeta3)/24d0) + zp**4*(-((pi**2)/72d
|
|
&0) + 1d0/96d0 - (myi*pi*3d0*szp)/64d0 + (pi**2*ll2)/48d
|
|
&0 + (myi*pi*szp*ll2)/6d0 - (myi*pi*szp*ll2**2)/8d0 - (z
|
|
&eta3)/32d0) + zp**5*(-((pi**2*131d0)/11520d0) + 1d0/64d
|
|
&0 - (myi*pi*83d0*szp)/1920d0 + (pi**2*ll2)/60d0 + (myi*
|
|
&pi*131d0*szp*ll2)/960d0 - (myi*pi*szp*ll2**2)/10d0 - (z
|
|
&eta3)/40d0) + zp**6*(11d0/640d0 - (pi**2*661d0)/69120d0
|
|
& - (myi*pi*11d0*szp)/288d0 + (pi**2*ll2)/72d0 + (myi*pi
|
|
&*661d0*szp*ll2)/5760d0 - (myi*pi*szp*ll2**2)/12d0 - (ze
|
|
&ta3)/48d0) + zp**7*(-((pi**2*1327d0)/161280d0) + 49d0/2
|
|
&880d0 - (myi*pi*5417d0*szp)/161280d0 + (pi**2*ll2)/84d0
|
|
& + (myi*pi*1327d0*szp*ll2)/13440d0 - (myi*pi*szp*ll2**2
|
|
&)/14d0 - (zeta3)/56d0) + zp**8*(-((pi**2*1163d0)/161280
|
|
&d0) + 2603d0/161280d0 - (myi*pi*137d0*szp)/4608d0 + (pi
|
|
&**2*ll2)/96d0 + (myi*pi*1163d0*szp*ll2)/13440d0 - (myi*
|
|
&pi*szp*ll2**2)/16d0 - (zeta3)/64d0) + zp**9*(-((pi**2*1
|
|
&48969d0)/23224320d0) + 809d0/53760d0 - (myi*pi*617027d0
|
|
&*szp)/23224320d0 + (pi**2*ll2)/108d0 + (myi*pi*148969d0
|
|
&*szp*ll2)/1935360d0 - (myi*pi*szp*ll2**2)/18d0 - (zeta3
|
|
&)/72d0) + zp*((pi**2*ll2)/12d0 - (myi*pi*szp*ll2**2)/2d
|
|
&0 - (zeta3)/8d0)
|
|
|
|
case(54) !0111
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((pi**4)/90d0) - (pi**2*ll2**2)/24d0
|
|
& + (zp*ll2**3)/6d0 + (ll2**4)/24d0 + zp**2*(-((ll2**2)/
|
|
&8d0) + (ll2**3)/12d0) + zp**3*((ll2)/24d0 - (5d0*ll2**2
|
|
&)/48d0 + (ll2**3)/18d0) + zp**4*(-(1d0/192d0) + (3d0*ll
|
|
&2)/64d0 - (ll2**2)/12d0 + (ll2**3)/24d0) + zp**5*(-(7d0
|
|
&/960d0) + (83d0*ll2)/1920d0 - (131d0*ll2**2)/1920d0 + (
|
|
&ll2**3)/30d0) + zp**6*(-(35d0/4608d0) + (11d0*ll2)/288d
|
|
&0 - (661d0*ll2**2)/11520d0 + (ll2**3)/36d0) + zp**7*(-(
|
|
&155d0/21504d0) + (5417d0*ll2)/161280d0 - (1327d0*ll2**2
|
|
&)/26880d0 + (ll2**3)/42d0) + zp**8*(-(2441d0/368640d0)
|
|
&+ (137d0*ll2)/4608d0 - (1163d0*ll2**2)/26880d0 + (ll2**
|
|
&3)/48d0) + zp**9*(-(19997d0/3317760d0) + (617027d0*ll2)
|
|
&/23224320d0 - (148969d0*ll2**2)/3870720d0 + (ll2**3)/54
|
|
&d0) + cli4pt5 + (7d0*ll2*zeta3)/8d0
|
|
|
|
case(55) !1-1-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = zp**8*(-(1d0/1048576d0) + (llzp)/1310
|
|
&72d0 - (llzp**2)/32768d0 + (llzp**3)/12288d0) + zp*(-(1
|
|
&d0/2d0) + (llzp)/2d0 - (llzp**2)/4d0 + (llzp**3)/12d0)
|
|
&+ zp**3*(-(1d0/648d0) + (llzp)/216d0 - (llzp**2)/144d0
|
|
&+ (llzp**3)/144d0) + zp**6*(-(1d0/82944d0) + (llzp)/138
|
|
&24d0 - (llzp**2)/4608d0 + (llzp**3)/2304d0) + zp**9*(-(
|
|
&1d0/3359232d0) + (llzp)/373248d0 - (llzp**2)/82944d0 +
|
|
&(llzp**3)/27648d0) + zp**4*(-(1d0/4096d0) + (llzp)/1024
|
|
&d0 - (llzp**2)/512d0 + (llzp**3)/384d0) + zp**2*(-(1d0/
|
|
&64d0) + (llzp)/32d0 - (llzp**2)/32d0 + (llzp**3)/48d0)
|
|
&+ zp**7*(-(1d0/307328d0) + (llzp)/43904d0 - (llzp**2)/1
|
|
&2544d0 + (llzp**3)/5376d0) + zp**5*(-(1d0/20000d0) + (l
|
|
&lzp)/4000d0 - (llzp**2)/1600d0 + (llzp**3)/960d0) + cli
|
|
&4pt5
|
|
|
|
case(56) !1-1-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/720d0 + (myi*pi**3*szp*ll2)/1
|
|
&2d0 - (myi*pi*szp*ll2**3)/6d0 + (ll2**4)/24d0 + cli4pt5
|
|
& - (myi*pi*7d0*szp*zeta3)/8d0 - (ll2*zeta3)/8d0 + zp**5
|
|
&*(-(329d0/17280d0) - (pi**2)/4800d0 + (myi*pi*szp)/4000
|
|
&d0 + (pi**2*llzp)/960d0 - (myi*pi*szp*llzp)/800d0 + (my
|
|
&i*pi*szp*llzp**2)/320d0 + (zeta3)/160d0) + zp**8*(-(183
|
|
&91283d0/9483264000d0) - (pi**2)/98304d0 + (myi*pi*szp)/
|
|
&131072d0 + (pi**2*llzp)/12288d0 - (myi*pi*szp*llzp)/163
|
|
&84d0 + (myi*pi*szp*llzp**2)/4096d0 + (zeta3)/2048d0) +
|
|
&zp**3*(-((pi**2)/432d0) - 5d0/48d0 + (myi*pi*szp)/216d0
|
|
& + (pi**2*llzp)/144d0 - (myi*pi*szp*llzp)/72d0 + (myi*p
|
|
&i*szp*llzp**2)/48d0 + (zeta3)/24d0) + zp*(-((pi**2)/12d
|
|
&0) + (myi*pi*szp)/2d0 + (pi**2*llzp)/12d0 - (myi*pi*szp
|
|
&*llzp)/2d0 + (myi*pi*szp*llzp**2)/4d0 + (zeta3)/2d0) +
|
|
&zp**6*(-((pi**2)/13824d0) - 44581d0/5184000d0 + (myi*pi
|
|
&*szp)/13824d0 + (pi**2*llzp)/2304d0 - (myi*pi*szp*llzp)
|
|
&/2304d0 + (myi*pi*szp*llzp**2)/768d0 + (zeta3)/384d0) +
|
|
& zp**9*(-(20706533d0/21337344000d0) - (pi**2)/248832d0
|
|
&+ (myi*pi*szp)/373248d0 + (pi**2*llzp)/27648d0 - (myi*p
|
|
&i*szp*llzp)/41472d0 + (myi*pi*szp*llzp**2)/9216d0 + (ze
|
|
&ta3)/4608d0) + zp**4*(-((pi**2)/1536d0) - 151d0/3456d0
|
|
&+ (myi*pi*szp)/1024d0 + (pi**2*llzp)/384d0 - (myi*pi*sz
|
|
&p*llzp)/256d0 + (myi*pi*szp*llzp**2)/128d0 + (zeta3)/64
|
|
&d0) + zp**7*(-((pi**2)/37632d0) - 48581d0/12096000d0 +
|
|
&(myi*pi*szp)/43904d0 + (pi**2*llzp)/5376d0 - (myi*pi*sz
|
|
&p*llzp)/6272d0 + (myi*pi*szp*llzp**2)/1792d0 + (zeta3)/
|
|
&896d0) + zp**2*(-(1d0/4d0) - (pi**2)/96d0 + (myi*pi*szp
|
|
&)/32d0 + (pi**2*llzp)/48d0 - (myi*pi*szp*llzp)/16d0 + (
|
|
&myi*pi*szp*llzp**2)/16d0 + (zeta3)/8d0)
|
|
|
|
case(57) !1-1-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/288d0) - (pi**2*ll2**2)/24d
|
|
&0 + (ll2**4)/24d0 + (7d0*ll2*zeta3)/8d0 + zp**7*(4081d0
|
|
&/3072000d0 + (pi**2)/75264d0 + (pi**2*ll2)/10752d0 - (l
|
|
&l2)/43904d0 - (ll2**2)/12544d0 - (ll2**3)/5376d0 - (pi*
|
|
&*2*llzp)/10752d0 + (ll2*llzp)/6272d0 + (ll2**2*llzp)/17
|
|
&92d0 - (ll2*llzp**2)/1792d0 - (zeta3)/1024d0) + zp**5*(
|
|
&407d0/55296d0 + (pi**2)/9600d0 + (pi**2*ll2)/1920d0 - (
|
|
&ll2)/4000d0 - (ll2**2)/1600d0 - (ll2**3)/960d0 - (pi**2
|
|
&*llzp)/1920d0 + (ll2*llzp)/800d0 + (ll2**2*llzp)/320d0
|
|
&- (ll2*llzp**2)/320d0 - (7d0*zeta3)/1280d0) + zp**8*((p
|
|
&i**2)/196608d0 + 9822481d0/16859136000d0 - (ll2)/131072
|
|
&d0 + (pi**2*ll2)/24576d0 - (ll2**2)/32768d0 - (ll2**3)/
|
|
&12288d0 - (pi**2*llzp)/24576d0 + (ll2*llzp)/16384d0 + (
|
|
&ll2**2*llzp)/4096d0 - (ll2*llzp**2)/4096d0 - (7d0*zeta3
|
|
&)/16384d0) + zp*((pi**2)/24d0 + (pi**2*ll2)/24d0 - (ll2
|
|
&)/2d0 - (ll2**2)/4d0 - (ll2**3)/12d0 - (pi**2*llzp)/24d
|
|
&0 + (ll2*llzp)/2d0 + (ll2**2*llzp)/4d0 - (ll2*llzp**2)/
|
|
&4d0 - (7d0*zeta3)/16d0) + zp**3*(3d0/64d0 + (pi**2)/864
|
|
&d0 - (ll2)/216d0 + (pi**2*ll2)/288d0 - (ll2**2)/144d0 -
|
|
& (ll2**3)/144d0 - (pi**2*llzp)/288d0 + (ll2*llzp)/72d0
|
|
&+ (ll2**2*llzp)/48d0 - (ll2*llzp**2)/48d0 - (7d0*zeta3)
|
|
&/192d0) + zp**6*((pi**2)/27648d0 + 256103d0/82944000d0
|
|
&- (ll2)/13824d0 + (pi**2*ll2)/4608d0 - (ll2**2)/4608d0
|
|
&- (ll2**3)/2304d0 - (pi**2*llzp)/4608d0 + (ll2*llzp)/23
|
|
&04d0 + (ll2**2*llzp)/768d0 - (ll2*llzp**2)/768d0 - (7d0
|
|
&*zeta3)/3072d0) + zp**9*((pi**2)/497664d0 + 78708473d0/
|
|
&303464448000d0 - (ll2)/373248d0 + (pi**2*ll2)/55296d0 -
|
|
& (ll2**2)/82944d0 - (ll2**3)/27648d0 - (pi**2*llzp)/552
|
|
&96d0 + (ll2*llzp)/41472d0 + (ll2**2*llzp)/9216d0 - (ll2
|
|
&*llzp**2)/9216d0 - (7d0*zeta3)/36864d0) + zp**4*(251d0/
|
|
&13824d0 + (pi**2)/3072d0 - (ll2)/1024d0 + (pi**2*ll2)/7
|
|
&68d0 - (ll2**2)/512d0 - (ll2**3)/384d0 - (pi**2*llzp)/7
|
|
&68d0 + (ll2*llzp)/256d0 + (ll2**2*llzp)/128d0 - (ll2*ll
|
|
&zp**2)/128d0 - (7d0*zeta3)/512d0) + zp**2*((pi**2)/192d
|
|
&0 + 1d0/8d0 - (ll2)/32d0 + (pi**2*ll2)/96d0 - (ll2**2)/
|
|
&32d0 - (ll2**3)/48d0 - (pi**2*llzp)/96d0 + (ll2*llzp)/1
|
|
&6d0 + (ll2**2*llzp)/16d0 - (ll2*llzp**2)/16d0 - (7d0*ze
|
|
&ta3)/64d0)
|
|
|
|
case(58) !1-10-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*19d0)/1440d0) + (pi**2*ll2**
|
|
&2)/24d0 + (ll2**4)/24d0 + cli4pt5 + zp*((pi**2)/12d0 -
|
|
&(pi**2*llzp)/12d0 - zeta3) + (ll2*zeta3)/4d0 + zp**8*(1
|
|
&0723549d0/2370816000d0 + (pi**2)/98304d0 - (pi**2*llzp)
|
|
&/12288d0 - (9701d0*llzp)/1881600d0 - (zeta3)/1024d0) +
|
|
&zp**3*((pi**2)/432d0 + 1d0/4d0 - (pi**2*llzp)/144d0 - (
|
|
&llzp)/8d0 - (zeta3)/12d0) + zp**6*((pi**2)/13824d0 + 51
|
|
&521d0/2592000d0 - (pi**2*llzp)/2304d0 - (347d0*llzp)/21
|
|
&600d0 - (zeta3)/192d0) + zp**9*(24451813d0/10668672000d
|
|
&0 + (pi**2)/248832d0 - (pi**2*llzp)/27648d0 - (209d0*ll
|
|
&zp)/66150d0 - (zeta3)/2304d0) + zp**4*((pi**2)/1536d0 +
|
|
& 709d0/6912d0 - (pi**2*llzp)/384d0 - (35d0*llzp)/576d0
|
|
&- (zeta3)/32d0) + zp**7*((pi**2)/37632d0 + 393707d0/423
|
|
&36000d0 - (149d0*llzp)/16800d0 - (pi**2*llzp)/5376d0 -
|
|
&(zeta3)/448d0) + zp**2*(5d0/8d0 + (pi**2)/96d0 - (pi**2
|
|
&*llzp)/48d0 - (llzp)/4d0 - (zeta3)/4d0) + zp**5*(1909d0
|
|
&/43200d0 + (pi**2)/4800d0 - (11d0*llzp)/360d0 - (pi**2*
|
|
&llzp)/960d0 - (zeta3)/80d0)
|
|
|
|
case(59) !1-100
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*41d0)/1440d0) + (myi*pi**3*s
|
|
&zp*ll2)/12d0 + (pi**2*ll2**2)/4d0 - myi*pi*szp*zeta3 -
|
|
&(3d0*ll2*zeta3)/4d0 + zp**5*((pi**2)/1600d0 + 5d0/192d0
|
|
& - (myi*pi*11d0*szp)/360d0 + (myi*pi**3*szp)/960d0 - (p
|
|
&i**2*llzp)/320d0 - (zeta3)/160d0) + zp**8*((pi**2)/3276
|
|
&8d0 + 4669d0/552960d0 + (myi*pi**3*szp)/12288d0 - (myi*
|
|
&pi*9701d0*szp)/1881600d0 - (pi**2*llzp)/4096d0 - (zeta3
|
|
&)/2048d0) + zp**3*((pi**2)/144d0 + 1d0/24d0 + (myi*pi**
|
|
&3*szp)/144d0 - (myi*pi*szp)/8d0 - (pi**2*llzp)/48d0 - (
|
|
&zeta3)/24d0) + zp*((pi**2)/4d0 + (myi*pi**3*szp)/12d0 -
|
|
& (pi**2*llzp)/4d0 - (zeta3)/2d0) + zp**6*(41d0/2304d0 +
|
|
& (pi**2)/4608d0 + (myi*pi**3*szp)/2304d0 - (myi*pi*347d
|
|
&0*szp)/21600d0 - (pi**2*llzp)/768d0 - (zeta3)/384d0) +
|
|
&zp**9*(10457d0/1741824d0 + (pi**2)/82944d0 + (myi*pi**3
|
|
&*szp)/27648d0 - (myi*pi*209d0*szp)/66150d0 - (pi**2*llz
|
|
&p)/9216d0 - (zeta3)/4608d0) + zp**4*((pi**2)/512d0 + 7d
|
|
&0/192d0 + (myi*pi**3*szp)/384d0 - (myi*pi*35d0*szp)/576
|
|
&d0 - (pi**2*llzp)/128d0 - (zeta3)/64d0) + zp**7*((pi**2
|
|
&)/12544d0 + 2941d0/241920d0 - (myi*pi*149d0*szp)/16800d
|
|
&0 + (myi*pi**3*szp)/5376d0 - (pi**2*llzp)/1792d0 - (zet
|
|
&a3)/896d0) + zp**2*((pi**2)/32d0 + (myi*pi**3*szp)/48d0
|
|
& - (myi*pi*szp)/4d0 - (pi**2*llzp)/16d0 - (zeta3)/8d0)
|
|
|
|
case(60) !1-101
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*11d0)/240d0) - (pi**2*ll2**2
|
|
&)/8d0 + (ll2**4)/6d0 + 4*cli4pt5 + (13d0*ll2*zeta3)/4d0
|
|
& + zp**5*(-(31d0/2880d0) + (pi**2)/9600d0 + (11d0*ll2)/
|
|
&360d0 - (pi**2*llzp)/1920d0 - (zeta3)/256d0) + zp**8*((
|
|
&pi**2)/196608d0 - 744197d0/270950400d0 + (9701d0*ll2)/1
|
|
&881600d0 - (pi**2*llzp)/24576d0 - (5d0*zeta3)/16384d0)
|
|
&+ zp*((pi**2)/24d0 - (pi**2*llzp)/24d0 - (5d0*zeta3)/16
|
|
&d0) + zp**3*(-(1d0/48d0) + (pi**2)/864d0 + (ll2)/8d0 -
|
|
&(pi**2*llzp)/288d0 - (5d0*zeta3)/192d0) + zp**6*((pi**2
|
|
&)/27648d0 - 73d0/10800d0 + (347d0*ll2)/21600d0 - (pi**2
|
|
&*llzp)/4608d0 - (5d0*zeta3)/3072d0) + zp**9*((pi**2)/49
|
|
&7664d0 - 555271d0/304819200d0 + (209d0*ll2)/66150d0 - (
|
|
&pi**2*llzp)/55296d0 - (5d0*zeta3)/36864d0) + zp**4*(-(1
|
|
&9d0/1152d0) + (pi**2)/3072d0 + (35d0*ll2)/576d0 - (pi**
|
|
&2*llzp)/768d0 - (5d0*zeta3)/512d0) + zp**2*((pi**2)/192
|
|
&d0 + (ll2)/4d0 - (pi**2*llzp)/96d0 - (5d0*zeta3)/64d0)
|
|
&+ zp**7*(-(10313d0/2419200d0) + (pi**2)/75264d0 + (149d
|
|
&0*ll2)/16800d0 - (pi**2*llzp)/10752d0 - (5d0*zeta3)/716
|
|
&8d0)
|
|
|
|
case(61) !1-11-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/1440d0 - (pi**2*ll2**2)/24d0
|
|
&+ (ll2**4)/24d0 + (ll2*zeta3)/4d0 + zp**7*(-((pi**2)/75
|
|
&264d0) - 93371d0/32256000d0 - (pi**2*ll2)/5376d0 + (ll2
|
|
&**2)/12544d0 + (ll2**3)/2688d0 + (pi**2*llzp)/10752d0 +
|
|
& (767d0*llzp)/460800d0 - (ll2**2*llzp)/1792d0 + (zeta3)
|
|
&/512d0) + zp**6*(-(17653d0/2592000d0) - (pi**2)/27648d0
|
|
& - (pi**2*ll2)/2304d0 + (ll2**2)/4608d0 + (ll2**3)/1152
|
|
&d0 + (pi**2*llzp)/4608d0 + (5269d0*llzp)/1382400d0 - (l
|
|
&l2**2*llzp)/768d0 + (7d0*zeta3)/1536d0) + zp**9*(-(2276
|
|
&013631d0/4096770048000d0) - (pi**2)/497664d0 - (pi**2*l
|
|
&l2)/27648d0 + (ll2**2)/82944d0 + (ll2**3)/13824d0 + (10
|
|
&77749d0*llzp)/3251404800d0 + (pi**2*llzp)/55296d0 - (ll
|
|
&2**2*llzp)/9216d0 + (7d0*zeta3)/18432d0) + zp**4*(-(115
|
|
&1d0/27648d0) - (pi**2)/3072d0 - (pi**2*ll2)/384d0 + (ll
|
|
&2**2)/512d0 + (ll2**3)/192d0 + (49d0*llzp)/2304d0 + (pi
|
|
&**2*llzp)/768d0 - (ll2**2*llzp)/128d0 + (7d0*zeta3)/256
|
|
&d0) + zp**2*(-((pi**2)/192d0) - 5d0/16d0 - (pi**2*ll2)/
|
|
&48d0 + (ll2**2)/32d0 + (ll2**3)/24d0 + (llzp)/8d0 + (pi
|
|
&**2*llzp)/96d0 - (ll2**2*llzp)/16d0 + (7d0*zeta3)/32d0)
|
|
& + zp**5*(-(2281d0/138240d0) - (pi**2)/9600d0 - (pi**2*
|
|
&ll2)/960d0 + (ll2**2)/1600d0 + (ll2**3)/480d0 + (pi**2*
|
|
&llzp)/1920d0 + (41d0*llzp)/4608d0 - (ll2**2*llzp)/320d0
|
|
& + (7d0*zeta3)/640d0) + zp**8*(-(127203607d0/1011548160
|
|
&00d0) - (pi**2)/196608d0 - (pi**2*ll2)/12288d0 + (ll2**
|
|
&2)/32768d0 + (ll2**3)/6144d0 + (pi**2*llzp)/24576d0 + (
|
|
&266681d0*llzp)/361267200d0 - (ll2**2*llzp)/4096d0 + (7d
|
|
&0*zeta3)/8192d0) + zp*(-((pi**2)/24d0) - (pi**2*ll2)/12
|
|
&d0 + (ll2**2)/4d0 + (ll2**3)/6d0 + (pi**2*llzp)/24d0 -
|
|
&(ll2**2*llzp)/4d0 + (7d0*zeta3)/8d0) + zp**3*(-((pi**2)
|
|
&/864d0) - 1d0/9d0 - (pi**2*ll2)/144d0 + (ll2**2)/144d0
|
|
&+ (ll2**3)/72d0 + (pi**2*llzp)/288d0 + (5d0*llzp)/96d0
|
|
&- (ll2**2*llzp)/48d0 + (7d0*zeta3)/96d0)
|
|
|
|
case(62) !1-110
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4)/360d0) - (myi*pi**3*szp*ll2
|
|
&)/12d0 - (pi**2*ll2**2)/24d0 + (myi*pi*szp*ll2**3)/6d0
|
|
&+ (myi*pi*szp*zeta3)/4d0 + ll2*zeta3 + zp**5*(-(49d0/57
|
|
&60d0) - (pi**2)/9600d0 - (myi*pi**3*szp)/1920d0 + (myi*
|
|
&pi*41d0*szp)/4608d0 - (pi**2*ll2)/640d0 + (myi*pi*szp*l
|
|
&l2)/800d0 + (myi*pi*szp*ll2**2)/320d0 + (pi**2*llzp)/19
|
|
&20d0 - (myi*pi*szp*ll2*llzp)/160d0 + (13d0*zeta3)/1280d
|
|
&0) + zp**8*(-((pi**2)/196608d0) - 374123d0/270950400d0
|
|
&- (myi*pi**3*szp)/24576d0 + (myi*pi*266681d0*szp)/36126
|
|
&7200d0 - (pi**2*ll2)/8192d0 + (myi*pi*szp*ll2)/16384d0
|
|
&+ (myi*pi*szp*ll2**2)/4096d0 + (pi**2*llzp)/24576d0 - (
|
|
&myi*pi*szp*ll2*llzp)/2048d0 + (13d0*zeta3)/16384d0) + z
|
|
&p*(-((pi**2)/24d0) - (myi*pi**3*szp)/24d0 - (pi**2*ll2)
|
|
&/8d0 + (myi*pi*szp*ll2)/2d0 + (myi*pi*szp*ll2**2)/4d0 +
|
|
& (pi**2*llzp)/24d0 - (myi*pi*szp*ll2*llzp)/2d0 + (13d0*
|
|
&zeta3)/16d0) + zp**3*(-(1d0/48d0) - (pi**2)/864d0 - (my
|
|
&i*pi**3*szp)/288d0 + (myi*pi*5d0*szp)/96d0 - (pi**2*ll2
|
|
&)/96d0 + (myi*pi*szp*ll2)/72d0 + (myi*pi*szp*ll2**2)/48
|
|
&d0 + (pi**2*llzp)/288d0 - (myi*pi*szp*ll2*llzp)/24d0 +
|
|
&(13d0*zeta3)/192d0) + zp**6*(-((pi**2)/27648d0) - 1609d
|
|
&0/345600d0 - (myi*pi**3*szp)/4608d0 + (myi*pi*5269d0*sz
|
|
&p)/1382400d0 - (pi**2*ll2)/1536d0 + (myi*pi*szp*ll2)/23
|
|
&04d0 + (myi*pi*szp*ll2**2)/768d0 + (pi**2*llzp)/4608d0
|
|
&- (myi*pi*szp*ll2*llzp)/384d0 + (13d0*zeta3)/3072d0) +
|
|
&zp**9*(-((pi**2)/497664d0) - 469253d0/609638400d0 + (my
|
|
&i*pi*1077749d0*szp)/3251404800d0 - (myi*pi**3*szp)/5529
|
|
&6d0 - (pi**2*ll2)/18432d0 + (myi*pi*szp*ll2)/41472d0 +
|
|
&(myi*pi*szp*ll2**2)/9216d0 + (pi**2*llzp)/55296d0 - (my
|
|
&i*pi*szp*ll2*llzp)/4608d0 + (13d0*zeta3)/36864d0) + zp*
|
|
&*4*(-(17d0/1152d0) - (pi**2)/3072d0 + (myi*pi*49d0*szp)
|
|
&/2304d0 - (myi*pi**3*szp)/768d0 - (pi**2*ll2)/256d0 + (
|
|
&myi*pi*szp*ll2)/256d0 + (myi*pi*szp*ll2**2)/128d0 + (pi
|
|
&**2*llzp)/768d0 - (myi*pi*szp*ll2*llzp)/64d0 + (13d0*ze
|
|
&ta3)/512d0) + zp**2*(-((pi**2)/192d0) + (myi*pi*szp)/8d
|
|
&0 - (myi*pi**3*szp)/96d0 - (pi**2*ll2)/32d0 + (myi*pi*s
|
|
&zp*ll2)/16d0 + (myi*pi*szp*ll2**2)/16d0 + (pi**2*llzp)/
|
|
&96d0 - (myi*pi*szp*ll2*llzp)/8d0 + (13d0*zeta3)/64d0) +
|
|
& zp**7*(-(6107d0/2419200d0) - (pi**2)/75264d0 - (myi*pi
|
|
&**3*szp)/10752d0 + (myi*pi*767d0*szp)/460800d0 - (pi**2
|
|
&*ll2)/3584d0 + (myi*pi*szp*ll2)/6272d0 + (myi*pi*szp*ll
|
|
&2**2)/1792d0 + (pi**2*llzp)/10752d0 - (myi*pi*szp*ll2*l
|
|
&lzp)/896d0 + (13d0*zeta3)/7168d0)
|
|
|
|
case(63) !1-111
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/30d0 + (pi**2*ll2**2)/6d0 - (
|
|
&ll2**4)/6d0 - 3*cli4pt5 - (23d0*ll2*zeta3)/8d0 + zp**5*
|
|
&(17d0/5120d0 + (pi**2*ll2)/1920d0 - (41d0*ll2)/4608d0 -
|
|
& (ll2**2)/1600d0 - (ll2**3)/480d0 + (ll2**2*llzp)/320d0
|
|
& - (zeta3)/1280d0) + zp**8*(629d0/1769472d0 + (pi**2*ll
|
|
&2)/24576d0 - (266681d0*ll2)/361267200d0 - (ll2**2)/3276
|
|
&8d0 - (ll2**3)/6144d0 + (ll2**2*llzp)/4096d0 - (zeta3)/
|
|
&16384d0) + zp*((pi**2*ll2)/24d0 - (ll2**2)/4d0 - (ll2**
|
|
&3)/6d0 + (ll2**2*llzp)/4d0 - (zeta3)/16d0) + zp**3*(1d0
|
|
&/96d0 + (pi**2*ll2)/288d0 - (5d0*ll2)/96d0 - (ll2**2)/1
|
|
&44d0 - (ll2**3)/72d0 + (ll2**2*llzp)/48d0 - (zeta3)/192
|
|
&d0) + zp**6*(59d0/36864d0 + (pi**2*ll2)/4608d0 - (5269d
|
|
&0*ll2)/1382400d0 - (ll2**2)/4608d0 - (ll2**3)/1152d0 +
|
|
&(ll2**2*llzp)/768d0 - (zeta3)/3072d0) + zp**9*(185921d0
|
|
&/1114767360d0 - (1077749d0*ll2)/3251404800d0 + (pi**2*l
|
|
&l2)/55296d0 - (ll2**2)/82944d0 - (ll2**3)/13824d0 + (ll
|
|
&2**2*llzp)/9216d0 - (zeta3)/36864d0) + zp**4*(5d0/768d0
|
|
& - (49d0*ll2)/2304d0 + (pi**2*ll2)/768d0 - (ll2**2)/512
|
|
&d0 - (ll2**3)/192d0 + (ll2**2*llzp)/128d0 - (zeta3)/512
|
|
&d0) + zp**2*(-((ll2)/8d0) + (pi**2*ll2)/96d0 - (ll2**2)
|
|
&/32d0 - (ll2**3)/24d0 + (ll2**2*llzp)/16d0 - (zeta3)/64
|
|
&d0) + zp**7*(2929d0/3870720d0 + (pi**2*ll2)/10752d0 - (
|
|
&767d0*ll2)/460800d0 - (ll2**2)/12544d0 - (ll2**3)/2688d
|
|
&0 + (ll2**2*llzp)/1792d0 - (zeta3)/7168d0)
|
|
|
|
case(64) !10-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/288d0) - (pi**2*ll2**2)/24d
|
|
&0 + (ll2**4)/24d0 + cli4pt5 + (zp*zeta3)/2d0 - (ll2*zet
|
|
&a3)/8d0 + zp**5*(-(12017d0/432000d0) + (79d0*llzp)/1800
|
|
&d0 - (llzp**2)/30d0 + (zeta3)/160d0) + zp**8*(-(2783246
|
|
&3d0/9483264000d0) + (7493d0*llzp)/940800d0 - (151d0*llz
|
|
&p**2)/13440d0 + (zeta3)/2048d0) + zp**3*(-(71d0/432d0)
|
|
&+ (13d0*llzp)/72d0 - (llzp**2)/12d0 + (zeta3)/24d0) + z
|
|
&p**6*(-(64861d0/5184000d0) + (169d0*llzp)/7200d0 - (llz
|
|
&p**2)/45d0 + (zeta3)/384d0) + zp**9*(-(293914637d0/1920
|
|
&36096000d0) + (3001d0*llzp)/595350d0 - (8d0*llzp**2)/94
|
|
&5d0 + (zeta3)/4608d0) + zp**4*(-(113d0/1728d0) + (25d0*
|
|
&llzp)/288d0 - (5d0*llzp**2)/96d0 + (zeta3)/64d0) + zp**
|
|
&7*(-(3505829d0/592704000d0) + (521d0*llzp)/39200d0 - (1
|
|
&3d0*llzp**2)/840d0 + (zeta3)/896d0) + zp**2*(-(7d0/16d0
|
|
&) + (3d0*llzp)/8d0 - (llzp**2)/8d0 + (zeta3)/8d0)
|
|
|
|
case(65) !10-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*17d0)/480d0) + (myi*pi**3*sz
|
|
&p*ll2)/6d0 - (pi**2*ll2**2)/6d0 + (ll2**4)/6d0 + 4*cli4
|
|
&pt5 - (myi*pi*5d0*szp*zeta3)/8d0 + (3d0*ll2*zeta3)/2d0
|
|
&+ zp*(-((myi*pi**3*szp)/12d0) + zeta3) + zp**8*(-((pi**
|
|
&2*151d0)/40320d0) + 42371d0/1382400d0 - (myi*pi**3*szp)
|
|
&/12288d0 + (myi*pi*7493d0*szp)/940800d0 - (myi*pi*151d0
|
|
&*szp*llzp)/6720d0 + (zeta3)/1024d0) + zp**3*(1d0/12d0 -
|
|
& (pi**2)/36d0 - (myi*pi**3*szp)/144d0 + (myi*pi*13d0*sz
|
|
&p)/72d0 - (myi*pi*szp*llzp)/6d0 + (zeta3)/12d0) + zp**6
|
|
&*(-((pi**2)/135d0) + 179d0/3456d0 - (myi*pi**3*szp)/230
|
|
&4d0 + (myi*pi*169d0*szp)/7200d0 - (myi*pi*2d0*szp*llzp)
|
|
&/45d0 + (zeta3)/192d0) + zp**9*(735253d0/30481920d0 - (
|
|
&pi**2*8d0)/2835d0 - (myi*pi**3*szp)/27648d0 + (myi*pi*3
|
|
&001d0*szp)/595350d0 - (myi*pi*16d0*szp*llzp)/945d0 + (z
|
|
&eta3)/2304d0) + zp**4*(1d0/12d0 - (pi**2*5d0)/288d0 + (
|
|
&myi*pi*25d0*szp)/288d0 - (myi*pi**3*szp)/384d0 - (myi*p
|
|
&i*5d0*szp*llzp)/48d0 + (zeta3)/32d0) + zp**7*(-((pi**2*
|
|
&13d0)/2520d0) + 23963d0/604800d0 + (myi*pi*521d0*szp)/3
|
|
&9200d0 - (myi*pi**3*szp)/5376d0 - (myi*pi*13d0*szp*llzp
|
|
&)/420d0 + (zeta3)/448d0) + zp**2*(-((pi**2)/24d0) - (my
|
|
&i*pi**3*szp)/48d0 + (myi*pi*3d0*szp)/8d0 - (myi*pi*szp*
|
|
&llzp)/4d0 + (zeta3)/4d0) + zp**5*(-((pi**2)/90d0) + 97d
|
|
&0/1440d0 + (myi*pi*79d0*szp)/1800d0 - (myi*pi**3*szp)/9
|
|
&60d0 - (myi*pi*szp*llzp)/15d0 + (zeta3)/80d0)
|
|
|
|
case(66) !10-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4*7d0)/180d0 - (pi**2*ll2**2)/12
|
|
&d0 - (ll2**4)/6d0 - 4*cli4pt5 - (13d0*ll2*zeta3)/8d0 +
|
|
&zp**5*((pi**2)/180d0 - 173d0/5760d0 + (pi**2*ll2)/640d0
|
|
& - (79d0*ll2)/1800d0 - (ll2**2)/30d0 + (ll2*llzp)/15d0
|
|
&- (zeta3)/160d0) + zp**8*(-(479389d0/38707200d0) + (pi*
|
|
&*2*151d0)/80640d0 + (pi**2*ll2)/8192d0 - (7493d0*ll2)/9
|
|
&40800d0 - (151d0*ll2**2)/13440d0 + (151d0*ll2*llzp)/672
|
|
&0d0 - (zeta3)/2048d0) + zp**3*(-(1d0/24d0) + (pi**2)/72
|
|
&d0 - (13d0*ll2)/72d0 + (pi**2*ll2)/96d0 - (ll2**2)/12d0
|
|
& + (ll2*llzp)/6d0 - (zeta3)/24d0) + zp*((pi**2*ll2)/8d0
|
|
& - (zeta3)/2d0) + zp**6*((pi**2)/270d0 - 3067d0/138240d
|
|
&0 + (pi**2*ll2)/1536d0 - (169d0*ll2)/7200d0 - (ll2**2)/
|
|
&45d0 + (2d0*ll2*llzp)/45d0 - (zeta3)/384d0) + zp**9*(-(
|
|
&1164053d0/121927680d0) + (pi**2*4d0)/2835d0 + (pi**2*ll
|
|
&2)/18432d0 - (3001d0*ll2)/595350d0 - (8d0*ll2**2)/945d0
|
|
& + (16d0*ll2*llzp)/945d0 - (zeta3)/4608d0) + zp**4*(-(5
|
|
&d0/128d0) + (pi**2*5d0)/576d0 + (pi**2*ll2)/256d0 - (25
|
|
&d0*ll2)/288d0 - (5d0*ll2**2)/96d0 + (5d0*ll2*llzp)/48d0
|
|
& - (zeta3)/64d0) + zp**7*(-(39751d0/2419200d0) + (pi**2
|
|
&*13d0)/5040d0 + (pi**2*ll2)/3584d0 - (521d0*ll2)/39200d
|
|
&0 - (13d0*ll2**2)/840d0 + (13d0*ll2*llzp)/420d0 - (zeta
|
|
&3)/896d0) + zp**2*((pi**2)/48d0 + (pi**2*ll2)/32d0 - (3
|
|
&d0*ll2)/8d0 - (ll2**2)/8d0 + (ll2*llzp)/4d0 - (zeta3)/8
|
|
&d0)
|
|
|
|
case(67) !100-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/60d0 + (pi**2*ll2**2)/12d0 -
|
|
&(ll2**4)/12d0 - 2*cli4pt5 - (zp*zeta3)/2d0 - (3d0*ll2*z
|
|
&eta3)/4d0 + zp**5*(-(317d0/2880d0) + (pi**2)/90d0 + (ll
|
|
&zp)/12d0 - (zeta3)/160d0) + zp**8*((pi**2*151d0)/40320d
|
|
&0 - 41419d0/921600d0 + (539d0*llzp)/11520d0 - (zeta3)/2
|
|
&048d0) + zp**3*((pi**2)/36d0 - 11d0/72d0 + (llzp)/12d0
|
|
&- (zeta3)/24d0) + zp**6*((pi**2)/135d0 - 187d0/2304d0 +
|
|
& (5d0*llzp)/72d0 - (zeta3)/384d0) + zp**9*(-(6297983d0/
|
|
&182891520d0) + (pi**2*8d0)/2835d0 + (22d0*llzp)/567d0 -
|
|
& (zeta3)/4608d0) + zp**4*(-(55d0/384d0) + (pi**2*5d0)/2
|
|
&88d0 + (3d0*llzp)/32d0 - (zeta3)/64d0) + zp**7*((pi**2*
|
|
&13d0)/2520d0 - 3451d0/57600d0 + (41d0*llzp)/720d0 - (ze
|
|
&ta3)/896d0) + zp**2*((pi**2)/24d0 - (zeta3)/8d0)
|
|
|
|
case(68) !1000
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*23d0)/720d0) - (myi*pi**3*sz
|
|
&p*zp)/12d0 + ((pi**2)/8d0 - (myi*pi**3*szp)/48d0)*zp**2
|
|
& + ((pi**2)/12d0 + (myi*pi*szp)/12d0 - (myi*pi**3*szp)/
|
|
&144d0)*zp**3 + (-(1d0/48d0) + (pi**2*5d0)/96d0 - (myi*p
|
|
&i**3*szp)/384d0 + (myi*pi*3d0*szp)/32d0)*zp**4 + (-(1d0
|
|
&/30d0) + (pi**2)/30d0 + (myi*pi*szp)/12d0 - (myi*pi**3*
|
|
&szp)/960d0)*zp**5 + (-(11d0/288d0) + (pi**2)/45d0 - (my
|
|
&i*pi**3*szp)/2304d0 + (myi*pi*5d0*szp)/72d0)*zp**6 + (-
|
|
&(13d0/336d0) + (pi**2*13d0)/840d0 - (myi*pi**3*szp)/537
|
|
&6d0 + (myi*pi*41d0*szp)/720d0)*zp**7 + ((pi**2*151d0)/1
|
|
&3440d0 - 427d0/11520d0 - (myi*pi**3*szp)/12288d0 + (myi
|
|
&*pi*539d0*szp)/11520d0)*zp**8 + (-(14d0/405d0) + (pi**2
|
|
&*8d0)/945d0 - (myi*pi**3*szp)/27648d0 + (myi*pi*22d0*sz
|
|
&p)/567d0)*zp**9 + (myi*pi**3*szp*ll2)/6d0 - (myi*pi*3d0
|
|
&*szp*zeta3)/4d0
|
|
|
|
case(69) !1001
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((pi**4)/288d0) - (3d0*zp*zeta3)/8d0
|
|
& + (3d0*ll2*zeta3)/4d0 + zp**3*((pi**2)/72d0 - (ll2)/12
|
|
&d0 - (zeta3)/32d0) + zp**4*((pi**2*5d0)/576d0 + 1d0/96d
|
|
&0 - (3d0*ll2)/32d0 - (3d0*zeta3)/256d0) + zp**2*((pi**2
|
|
&)/48d0 - (3d0*zeta3)/32d0) + zp**7*(47d0/2880d0 + (pi**
|
|
&2*13d0)/5040d0 - (41d0*ll2)/720d0 - (3d0*zeta3)/3584d0)
|
|
& + zp**6*((pi**2)/270d0 + 13d0/768d0 - (5d0*ll2)/72d0 -
|
|
& (zeta3)/512d0) + zp**9*(481d0/35840d0 + (pi**2*4d0)/28
|
|
&35d0 - (22d0*ll2)/567d0 - (zeta3)/6144d0) + zp**5*((pi*
|
|
&*2)/180d0 + 1d0/64d0 - (ll2)/12d0 - (3d0*zeta3)/640d0)
|
|
&+ zp**8*((pi**2*151d0)/80640d0 + 1379d0/92160d0 - (539d
|
|
&0*ll2)/11520d0 - (3d0*zeta3)/8192d0)
|
|
|
|
case(70) !101-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4*5d0)/144d0) + (pi**2*ll2**2)
|
|
&/12d0 + (ll2**4)/6d0 + 4*cli4pt5 + ll2*zeta3 + zp**5*(-
|
|
&((pi**2)/180d0) + 1367d0/28800d0 - (pi**2*ll2)/640d0 +
|
|
&(ll2**2)/30d0 - (llzp)/30d0 + (13d0*zeta3)/1280d0) + zp
|
|
&**8*(306053d0/18063360d0 - (pi**2*151d0)/80640d0 - (pi*
|
|
&*2*ll2)/8192d0 + (151d0*ll2**2)/13440d0 - (935d0*llzp)/
|
|
&64512d0 + (13d0*zeta3)/16384d0) + zp*(-((pi**2*ll2)/8d0
|
|
&) + (13d0*zeta3)/16d0) + zp**3*(11d0/144d0 - (pi**2)/72
|
|
&d0 - (pi**2*ll2)/96d0 + (ll2**2)/12d0 - (llzp)/24d0 + (
|
|
&13d0*zeta3)/192d0) + zp**6*(-((pi**2)/270d0) + 7639d0/2
|
|
&30400d0 - (pi**2*ll2)/1536d0 + (ll2**2)/45d0 - (97d0*ll
|
|
&zp)/3840d0 + (13d0*zeta3)/3072d0) + zp**9*(23078341d0/1
|
|
&828915200d0 - (pi**2*4d0)/2835d0 - (pi**2*ll2)/18432d0
|
|
&+ (8d0*ll2**2)/945d0 - (2041d0*llzp)/181440d0 + (13d0*z
|
|
&eta3)/36864d0) + zp**4*(19d0/288d0 - (pi**2*5d0)/576d0
|
|
&- (pi**2*ll2)/256d0 + (5d0*ll2**2)/96d0 - (llzp)/24d0 +
|
|
& (13d0*zeta3)/512d0) + zp**2*(-((pi**2)/48d0) - (pi**2*
|
|
&ll2)/32d0 + (ll2**2)/8d0 + (13d0*zeta3)/64d0) + zp**7*(
|
|
&3671d0/156800d0 - (pi**2*13d0)/5040d0 - (pi**2*ll2)/358
|
|
&4d0 + (13d0*ll2**2)/840d0 - (767d0*llzp)/40320d0 + (13d
|
|
&0*zeta3)/7168d0)
|
|
|
|
case(71) !1010
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = -((pi**4*11d0)/288d0) + (myi*pi**3*sz
|
|
&p*ll2)/12d0 - (pi**2*ll2**2)/6d0 + (ll2**4)/6d0 + 4*cli
|
|
&4pt5 - (myi*pi*szp*zeta3)/4d0 + 2*ll2*zeta3 + zp**3*(-(
|
|
&(pi**2)/72d0) - (myi*pi*szp)/24d0 - (myi*pi**3*szp)/288
|
|
&d0 + (myi*pi*szp*ll2)/6d0 + (zeta3)/16d0) + zp**6*(17d0
|
|
&/1152d0 - (pi**2)/270d0 - (myi*pi**3*szp)/4608d0 - (myi
|
|
&*pi*97d0*szp)/3840d0 + (myi*pi*2d0*szp*ll2)/45d0 + (zet
|
|
&a3)/256d0) + zp**9*(14081d0/1451520d0 - (pi**2*4d0)/283
|
|
&5d0 - (myi*pi*2041d0*szp)/181440d0 - (myi*pi**3*szp)/55
|
|
&296d0 + (myi*pi*16d0*szp*ll2)/945d0 + (zeta3)/3072d0) +
|
|
& zp**4*(-((pi**2*5d0)/576d0) + 1d0/96d0 - (myi*pi*szp)/
|
|
&24d0 - (myi*pi**3*szp)/768d0 + (myi*pi*5d0*szp*ll2)/48d
|
|
&0 + (3d0*zeta3)/128d0) + zp**2*(-((pi**2)/48d0) - (myi*
|
|
&pi**3*szp)/96d0 + (myi*pi*szp*ll2)/4d0 + (3d0*zeta3)/16
|
|
&d0) + zp**7*(179d0/13440d0 - (pi**2*13d0)/5040d0 - (myi
|
|
&*pi**3*szp)/10752d0 - (myi*pi*767d0*szp)/40320d0 + (myi
|
|
&*pi*13d0*szp*ll2)/420d0 + (3d0*zeta3)/1792d0) + zp**5*(
|
|
&-((pi**2)/180d0) + 7d0/480d0 - (myi*pi**3*szp)/1920d0 -
|
|
& (myi*pi*szp)/30d0 + (myi*pi*szp*ll2)/15d0 + (3d0*zeta3
|
|
&)/320d0) + zp**8*(-((pi**2*151d0)/80640d0) + 1057d0/921
|
|
&60d0 - (myi*pi**3*szp)/24576d0 - (myi*pi*935d0*szp)/645
|
|
&12d0 + (myi*pi*151d0*szp*ll2)/6720d0 + (3d0*zeta3)/4096
|
|
&d0) + zp*(-((myi*pi**3*szp)/24d0) + (3d0*zeta3)/4d0)
|
|
|
|
case(72) !1011
|
|
|
|
zp = x+1d0
|
|
|
|
ris = (pi**4)/30d0 + (pi**2*ll2**2)/8d0 - (
|
|
&ll2**4)/8d0 - 3*cli4pt5 + (zp*zeta3)/16d0 - (11d0*ll2*z
|
|
&eta3)/4d0 + zp**5*(-(13d0/1920d0) + (ll2)/30d0 - (ll2**
|
|
&2)/30d0 + (zeta3)/1280d0) + zp**8*(-(2321d0/516096d0) +
|
|
& (935d0*ll2)/64512d0 - (151d0*ll2**2)/13440d0 + (zeta3)
|
|
&/16384d0) + zp**3*((ll2)/24d0 - (ll2**2)/12d0 + (zeta3)
|
|
&/192d0) + zp**6*(-(37d0/5760d0) + (97d0*ll2)/3840d0 - (
|
|
&ll2**2)/45d0 + (zeta3)/3072d0) + zp**9*(-(157d0/43008d0
|
|
&) + (2041d0*ll2)/181440d0 - (8d0*ll2**2)/945d0 + (zeta3
|
|
&)/36864d0) + zp**4*(-(1d0/192d0) + (ll2)/24d0 - (5d0*ll
|
|
&2**2)/96d0 + (zeta3)/512d0) + zp**2*(-((ll2**2)/8d0) +
|
|
&(zeta3)/64d0) + zp**7*(-(221d0/40320d0) + (767d0*ll2)/4
|
|
&0320d0 - (13d0*ll2**2)/840d0 + (zeta3)/7168d0)
|
|
|
|
case(73) !11-1-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/720d0 + (ll2**4)/24d0 - (ll2*
|
|
&zeta3)/8d0 + zp**7*(104641d0/64512000d0 + (pi**2*ll2)/1
|
|
&0752d0 - (ll2**3)/5376d0 - (947d0*llzp)/460800d0 + (7d0
|
|
&*llzp**2)/5120d0 - (zeta3)/1024d0) + zp**5*(2671d0/2764
|
|
&80d0 + (pi**2*ll2)/1920d0 - (ll2**3)/960d0 - (53d0*llzp
|
|
&)/4608d0 + (5d0*llzp**2)/768d0 - (7d0*zeta3)/1280d0) +
|
|
&zp**8*(140539517d0/202309632000d0 + (pi**2*ll2)/24576d0
|
|
& - (ll2**3)/12288d0 - (647707d0*llzp)/722534400d0 + (36
|
|
&3d0*llzp**2)/573440d0 - (7d0*zeta3)/16384d0) + zp*((pi*
|
|
&*2*ll2)/24d0 - (ll2**3)/12d0 - (7d0*zeta3)/16d0) + zp**
|
|
&3*(41d0/576d0 + (pi**2*ll2)/288d0 - (ll2**3)/144d0 - (7
|
|
&d0*llzp)/96d0 + (llzp**2)/32d0 - (7d0*zeta3)/192d0) + z
|
|
&p**6*(322493d0/82944000d0 + (pi**2*ll2)/4608d0 - (ll2**
|
|
&3)/2304d0 - (2213d0*llzp)/460800d0 + (137d0*llzp**2)/46
|
|
&080d0 - (7d0*zeta3)/3072d0) + zp**9*(2486560891d0/81935
|
|
&40096000d0 + (pi**2*ll2)/55296d0 - (ll2**3)/27648d0 - (
|
|
&1290829d0*llzp)/3251404800d0 + (761d0*llzp**2)/2580480d
|
|
&0 - (7d0*zeta3)/36864d0) + zp**4*(1397d0/55296d0 + (pi*
|
|
&*2*ll2)/768d0 - (ll2**3)/384d0 - (131d0*llzp)/4608d0 +
|
|
&(11d0*llzp**2)/768d0 - (7d0*zeta3)/512d0) + zp**2*(7d0/
|
|
&32d0 + (pi**2*ll2)/96d0 - (ll2**3)/48d0 - (3d0*llzp)/16
|
|
&d0 + (llzp**2)/16d0 - (7d0*zeta3)/64d0)
|
|
|
|
case(74) !11-10
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4*7d0)/288d0 + (pi**2*ll2**2)/24
|
|
&d0 + (myi*pi*szp*ll2**3)/6d0 - (ll2**4)/12d0 - 2*cli4pt
|
|
&5 - (myi*pi*szp*zeta3)/8d0 - (13d0*ll2*zeta3)/8d0 + zp*
|
|
&*5*(-(107d0/5760d0) + (pi**2*5d0)/2304d0 + (myi*pi**3*s
|
|
&zp)/1920d0 - (myi*pi*53d0*szp)/4608d0 + (pi**2*ll2)/192
|
|
&0d0 - (myi*pi*szp*ll2**2)/320d0 + (myi*pi*5d0*szp*llzp)
|
|
&/384d0 - (zeta3)/160d0) + zp**8*(-(115543d0/38707200d0)
|
|
& + (pi**2*121d0)/573440d0 + (myi*pi**3*szp)/24576d0 - (
|
|
&myi*pi*647707d0*szp)/722534400d0 + (pi**2*ll2)/24576d0
|
|
&- (myi*pi*szp*ll2**2)/4096d0 + (myi*pi*363d0*szp*llzp)/
|
|
&286720d0 - (zeta3)/2048d0) + zp**3*(-(1d0/24d0) + (pi**
|
|
&2)/96d0 + (myi*pi**3*szp)/288d0 - (myi*pi*7d0*szp)/96d0
|
|
& + (pi**2*ll2)/288d0 - (myi*pi*szp*ll2**2)/48d0 + (myi*
|
|
&pi*szp*llzp)/16d0 - (zeta3)/24d0) + zp*((myi*pi**3*szp)
|
|
&/24d0 + (pi**2*ll2)/24d0 - (myi*pi*szp*ll2**2)/4d0 - (z
|
|
&eta3)/2d0) + zp**6*((pi**2*137d0)/138240d0 - 79d0/7680d
|
|
&0 - (myi*pi*2213d0*szp)/460800d0 + (myi*pi**3*szp)/4608
|
|
&d0 + (pi**2*ll2)/4608d0 - (myi*pi*szp*ll2**2)/768d0 + (
|
|
&myi*pi*137d0*szp*llzp)/23040d0 - (zeta3)/384d0) + zp**9
|
|
&*((pi**2*761d0)/7741440d0 - 983419d0/609638400d0 - (myi
|
|
&*pi*1290829d0*szp)/3251404800d0 + (myi*pi**3*szp)/55296
|
|
&d0 + (pi**2*ll2)/55296d0 - (myi*pi*szp*ll2**2)/9216d0 +
|
|
& (myi*pi*761d0*szp*llzp)/1290240d0 - (zeta3)/4608d0) +
|
|
&zp**4*((pi**2*11d0)/2304d0 - 1d0/32d0 - (myi*pi*131d0*s
|
|
&zp)/4608d0 + (myi*pi**3*szp)/768d0 + (pi**2*ll2)/768d0
|
|
&- (myi*pi*szp*ll2**2)/128d0 + (myi*pi*11d0*szp*llzp)/38
|
|
&4d0 - (zeta3)/64d0) + zp**7*(-(13441d0/2419200d0) + (pi
|
|
&**2*7d0)/15360d0 + (myi*pi**3*szp)/10752d0 - (myi*pi*94
|
|
&7d0*szp)/460800d0 + (pi**2*ll2)/10752d0 - (myi*pi*szp*l
|
|
&l2**2)/1792d0 + (myi*pi*7d0*szp*llzp)/2560d0 - (zeta3)/
|
|
&896d0) + zp**2*((pi**2)/48d0 - (myi*pi*3d0*szp)/16d0 +
|
|
&(myi*pi**3*szp)/96d0 + (pi**2*ll2)/96d0 - (myi*pi*szp*l
|
|
&l2**2)/16d0 + (myi*pi*szp*llzp)/8d0 - (zeta3)/8d0)
|
|
|
|
case(75) !11-11
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/30d0) - (pi**2*ll2**2)/8d0
|
|
&+ (ll2**4)/12d0 + 3*cli4pt5 + (11d0*ll2*zeta3)/4d0 + zp
|
|
&**6*(-((pi**2*137d0)/276480d0) + 37d0/9216d0 + (2213d0*
|
|
&ll2)/460800d0 - (pi**2*ll2)/4608d0 + (137d0*ll2**2)/460
|
|
&80d0 + (ll2**3)/2304d0 - (137d0*ll2*llzp)/23040d0 + (ze
|
|
&ta3)/1536d0) + zp**9*(-((pi**2*761d0)/15482880d0) + 926
|
|
&1559d0/19508428800d0 + (1290829d0*ll2)/3251404800d0 - (
|
|
&pi**2*ll2)/55296d0 + (761d0*ll2**2)/2580480d0 + (ll2**3
|
|
&)/27648d0 - (761d0*ll2*llzp)/1290240d0 + (zeta3)/18432d
|
|
&0) + zp**4*(-((pi**2*11d0)/4608d0) + 11d0/768d0 + (131d
|
|
&0*ll2)/4608d0 - (pi**2*ll2)/768d0 + (11d0*ll2**2)/768d0
|
|
& + (ll2**3)/384d0 - (11d0*ll2*llzp)/384d0 + (zeta3)/256
|
|
&d0) + zp**2*(-((pi**2)/96d0) + (3d0*ll2)/16d0 - (pi**2*
|
|
&ll2)/96d0 + (ll2**2)/16d0 + (ll2**3)/48d0 - (ll2*llzp)/
|
|
&8d0 + (zeta3)/32d0) + zp**7*(38569d0/19353600d0 - (pi**
|
|
&2*7d0)/30720d0 - (pi**2*ll2)/10752d0 + (947d0*ll2)/4608
|
|
&00d0 + (7d0*ll2**2)/5120d0 + (ll2**3)/5376d0 - (7d0*ll2
|
|
&*llzp)/2560d0 + (zeta3)/3584d0) + zp**5*(181d0/23040d0
|
|
&- (pi**2*5d0)/4608d0 - (pi**2*ll2)/1920d0 + (53d0*ll2)/
|
|
&4608d0 + (5d0*ll2**2)/768d0 + (ll2**3)/960d0 - (5d0*ll2
|
|
&*llzp)/384d0 + (zeta3)/640d0) + zp**8*(-((pi**2*121d0)/
|
|
&1146880d0) + 43171d0/44236800d0 - (pi**2*ll2)/24576d0 +
|
|
& (647707d0*ll2)/722534400d0 + (363d0*ll2**2)/573440d0 +
|
|
& (ll2**3)/12288d0 - (363d0*ll2*llzp)/286720d0 + (zeta3)
|
|
&/8192d0) + zp*(-((pi**2*ll2)/24d0) + (ll2**3)/12d0 + (z
|
|
&eta3)/8d0) + zp**3*(-((pi**2)/192d0) + 1d0/48d0 - (pi**
|
|
&2*ll2)/288d0 + (7d0*ll2)/96d0 + (ll2**2)/32d0 + (ll2**3
|
|
&)/144d0 - (ll2*llzp)/16d0 + (zeta3)/96d0)
|
|
|
|
case(76) !110-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = -((pi**4)/480d0) - (pi**2*ll2**2)/12d
|
|
&0 + (5d0*ll2*zeta3)/8d0 + zp**5*(-((pi**2*5d0)/2304d0)
|
|
&+ 77d0/2400d0 + (pi**2*ll2)/960d0 - (llzp)/40d0 - (zeta
|
|
&3)/256d0) + zp**8*(232819d0/45158400d0 - (pi**2*121d0)/
|
|
&573440d0 + (pi**2*ll2)/12288d0 - (1019d0*llzp)/161280d0
|
|
& - (5d0*zeta3)/16384d0) + zp*((pi**2*ll2)/12d0 - (5d0*z
|
|
&eta3)/16d0) + zp**3*(11d0/144d0 - (pi**2)/96d0 + (pi**2
|
|
&*ll2)/144d0 - (llzp)/24d0 - (5d0*zeta3)/192d0) + zp**6*
|
|
&(-((pi**2*137d0)/138240d0) + 169d0/9600d0 + (pi**2*ll2)
|
|
&/2304d0 - (23d0*llzp)/1440d0 - (5d0*zeta3)/3072d0) + zp
|
|
&**9*(40487d0/14288400d0 - (pi**2*761d0)/7741440d0 + (pi
|
|
&**2*ll2)/27648d0 - (23d0*llzp)/5670d0 - (5d0*zeta3)/368
|
|
&64d0) + zp**4*(-((pi**2*11d0)/2304d0) + 127d0/2304d0 +
|
|
&(pi**2*ll2)/384d0 - (7d0*llzp)/192d0 - (5d0*zeta3)/512d
|
|
&0) + zp**2*(-((pi**2)/48d0) + (pi**2*ll2)/48d0 - (5d0*z
|
|
&eta3)/64d0) + zp**7*(13423d0/1411200d0 - (pi**2*7d0)/15
|
|
&360d0 + (pi**2*ll2)/5376d0 - (101d0*llzp)/10080d0 - (5d
|
|
&0*zeta3)/7168d0)
|
|
|
|
case(77) !1100
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/48d0 - (myi*pi**3*szp*ll2)/12
|
|
&d0 - (pi**2*ll2**2)/6d0 - (ll2**4)/12d0 - 2*cli4pt5 + (
|
|
&myi*pi*szp*zeta3)/8d0 - ll2*zeta3 + zp**3*(-((pi**2)/32
|
|
&d0) - (myi*pi*szp)/24d0 + (myi*pi**3*szp)/288d0 + (pi**
|
|
&2*ll2)/48d0 - (zeta3)/32d0) + zp**4*(-((pi**2*11d0)/768
|
|
&d0) + 1d0/96d0 + (myi*pi**3*szp)/768d0 - (myi*pi*7d0*sz
|
|
&p)/192d0 + (pi**2*ll2)/128d0 - (3d0*zeta3)/256d0) + zp*
|
|
&*2*(-((pi**2)/16d0) + (myi*pi**3*szp)/96d0 + (pi**2*ll2
|
|
&)/16d0 - (3d0*zeta3)/32d0) + zp**7*(167d0/16128d0 - (pi
|
|
&**2*7d0)/5120d0 - (myi*pi*101d0*szp)/10080d0 + (myi*pi*
|
|
&*3*szp)/10752d0 + (pi**2*ll2)/1792d0 - (3d0*zeta3)/3584
|
|
&d0) + zp**6*(29d0/2304d0 - (pi**2*137d0)/46080d0 - (myi
|
|
&*pi*23d0*szp)/1440d0 + (myi*pi**3*szp)/4608d0 + (pi**2*
|
|
&ll2)/768d0 - (zeta3)/512d0) + zp**9*(2569d0/414720d0 -
|
|
&(pi**2*761d0)/2580480d0 + (myi*pi**3*szp)/55296d0 - (my
|
|
&i*pi*23d0*szp)/5670d0 + (pi**2*ll2)/9216d0 - (zeta3)/61
|
|
&44d0) + zp**5*(-((pi**2*5d0)/768d0) + 13d0/960d0 + (myi
|
|
&*pi**3*szp)/1920d0 - (myi*pi*szp)/40d0 + (pi**2*ll2)/32
|
|
&0d0 - (3d0*zeta3)/640d0) + zp**8*(-((pi**2*363d0)/57344
|
|
&0d0) + 497d0/61440d0 - (myi*pi*1019d0*szp)/161280d0 + (
|
|
&myi*pi**3*szp)/24576d0 + (pi**2*ll2)/4096d0 - (3d0*zeta
|
|
&3)/8192d0) + zp*((myi*pi**3*szp)/24d0 + (pi**2*ll2)/4d0
|
|
& - (3d0*zeta3)/8d0)
|
|
|
|
case(78) !1101
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((pi**4)/30d0) - (pi**2*ll2**2)/6d0
|
|
&+ (ll2**4)/8d0 + 3*cli4pt5 + (23d0*ll2*zeta3)/8d0 + zp*
|
|
&*6*(-((pi**2*137d0)/276480d0) - 31d0/5760d0 + (23d0*ll2
|
|
&)/1440d0 + (pi**2*ll2)/4608d0 - (zeta3)/1536d0) + zp**9
|
|
&*(-(43d0/20160d0) - (pi**2*761d0)/15482880d0 + (pi**2*l
|
|
&l2)/55296d0 + (23d0*ll2)/5670d0 - (zeta3)/18432d0) + zp
|
|
&**4*(-(1d0/192d0) - (pi**2*11d0)/4608d0 + (pi**2*ll2)/7
|
|
&68d0 + (7d0*ll2)/192d0 - (zeta3)/256d0) + zp**2*(-((pi*
|
|
&*2)/96d0) + (pi**2*ll2)/96d0 - (zeta3)/32d0) + zp**7*(-
|
|
&(221d0/53760d0) - (pi**2*7d0)/30720d0 + (101d0*ll2)/100
|
|
&80d0 + (pi**2*ll2)/10752d0 - (zeta3)/3584d0) + zp**5*(-
|
|
&(1d0/160d0) - (pi**2*5d0)/4608d0 + (pi**2*ll2)/1920d0 +
|
|
& (ll2)/40d0 - (zeta3)/640d0) + zp**8*(-((pi**2*121d0)/1
|
|
&146880d0) - 7709d0/2580480d0 + (1019d0*ll2)/161280d0 +
|
|
&(pi**2*ll2)/24576d0 - (zeta3)/8192d0) + zp*((pi**2*ll2)
|
|
&/24d0 - (zeta3)/8d0) + zp**3*(-((pi**2)/192d0) + (ll2)/
|
|
&24d0 + (pi**2*ll2)/288d0 - (zeta3)/96d0)
|
|
|
|
case(79) !111-1
|
|
|
|
zp = x+1d0
|
|
llzp = log(zp)
|
|
|
|
ris = (pi**4)/90d0 + (pi**2*ll2**2)/24d0 -
|
|
&(ll2**4)/12d0 - cli4pt5 - (7d0*ll2*zeta3)/8d0 + zp**5*(
|
|
&-(599d0/46080d0) + (pi**2*5d0)/4608d0 - (5d0*ll2**2)/76
|
|
&8d0 + (ll2**3)/960d0 + (7d0*llzp)/768d0 - (zeta3)/1280d
|
|
&0) + zp**8*((pi**2*121d0)/1146880d0 - 21977d0/14745600d
|
|
&0 - (363d0*ll2**2)/573440d0 + (ll2**3)/12288d0 + (469d0
|
|
&*llzp)/368640d0 - (zeta3)/16384d0) + zp*((ll2**3)/12d0
|
|
&- (zeta3)/16d0) + zp**3*((pi**2)/192d0 - 11d0/288d0 - (
|
|
&ll2**2)/32d0 + (ll2**3)/144d0 + (llzp)/48d0 - (zeta3)/1
|
|
&92d0) + zp**6*((pi**2*137d0)/276480d0 - 79d0/12288d0 -
|
|
&(137d0*ll2**2)/46080d0 + (ll2**3)/2304d0 + (5d0*llzp)/1
|
|
&024d0 - (zeta3)/3072d0) + zp**9*((pi**2*761d0)/15482880
|
|
&d0 - 83359739d0/117050572800d0 - (761d0*ll2**2)/2580480
|
|
&d0 + (ll2**3)/27648d0 + (29531d0*llzp)/46448640d0 - (ze
|
|
&ta3)/36864d0) + zp**4*((pi**2*11d0)/4608d0 - 19d0/768d0
|
|
& - (11d0*ll2**2)/768d0 + (ll2**3)/384d0 + (llzp)/64d0 -
|
|
& (zeta3)/512d0) + zp**2*((pi**2)/96d0 - (ll2**2)/16d0 +
|
|
& (ll2**3)/48d0 - (zeta3)/64d0) + zp**7*(-(3343d0/107520
|
|
&0d0) + (pi**2*7d0)/30720d0 - (7d0*ll2**2)/5120d0 + (ll2
|
|
&**3)/5376d0 + (29d0*llzp)/11520d0 - (zeta3)/7168d0)
|
|
|
|
case(80) !1110
|
|
|
|
zp = x+1d0
|
|
szp = s(zp)
|
|
|
|
ris = (pi**4)/90d0 + (pi**2*ll2**2)/12d0 -
|
|
&(myi*pi*szp*ll2**3)/6d0 - (ll2**4)/24d0 - cli4pt5 - ll2
|
|
&*zeta3 + zp**5*(-(11d0/1920d0) + (pi**2*5d0)/4608d0 + (
|
|
&myi*pi*7d0*szp)/768d0 - (pi**2*ll2)/1920d0 - (myi*pi*5d
|
|
&0*szp*ll2)/384d0 + (myi*pi*szp*ll2**2)/320d0 + (zeta3)/
|
|
&1280d0) + zp**8*((pi**2*121d0)/1146880d0 - 563d0/286720
|
|
&d0 + (myi*pi*469d0*szp)/368640d0 - (pi**2*ll2)/24576d0
|
|
&- (myi*pi*363d0*szp*ll2)/286720d0 + (myi*pi*szp*ll2**2)
|
|
&/4096d0 + (zeta3)/16384d0) + zp*(-((pi**2*ll2)/24d0) +
|
|
&(myi*pi*szp*ll2**2)/4d0 + (zeta3)/16d0) + zp**3*((pi**2
|
|
&)/192d0 + (myi*pi*szp)/48d0 - (pi**2*ll2)/288d0 - (myi*
|
|
&pi*szp*ll2)/16d0 + (myi*pi*szp*ll2**2)/48d0 + (zeta3)/1
|
|
&92d0) + zp**6*(-(103d0/23040d0) + (pi**2*137d0)/276480d
|
|
&0 + (myi*pi*5d0*szp)/1024d0 - (pi**2*ll2)/4608d0 - (myi
|
|
&*pi*137d0*szp*ll2)/23040d0 + (myi*pi*szp*ll2**2)/768d0
|
|
&+ (zeta3)/3072d0) + zp**9*(-(203d0/165888d0) + (pi**2*7
|
|
&61d0)/15482880d0 + (myi*pi*29531d0*szp)/46448640d0 - (p
|
|
&i**2*ll2)/55296d0 - (myi*pi*761d0*szp*ll2)/1290240d0 +
|
|
&(myi*pi*szp*ll2**2)/9216d0 + (zeta3)/36864d0) + zp**4*(
|
|
&-(1d0/192d0) + (pi**2*11d0)/4608d0 + (myi*pi*szp)/64d0
|
|
&- (pi**2*ll2)/768d0 - (myi*pi*11d0*szp*ll2)/384d0 + (my
|
|
&i*pi*szp*ll2**2)/128d0 + (zeta3)/512d0) + zp**2*((pi**2
|
|
&)/96d0 - (pi**2*ll2)/96d0 - (myi*pi*szp*ll2)/8d0 + (myi
|
|
&*pi*szp*ll2**2)/16d0 + (zeta3)/64d0) + zp**7*(-(493d0/1
|
|
&61280d0) + (pi**2*7d0)/30720d0 + (myi*pi*29d0*szp)/1152
|
|
&0d0 - (pi**2*ll2)/10752d0 - (myi*pi*7d0*szp*ll2)/2560d0
|
|
& + (myi*pi*szp*ll2**2)/1792d0 + (zeta3)/7168d0)
|
|
|
|
case(81) !1111
|
|
|
|
zp = x+1d0
|
|
|
|
ris = -((zp*ll2**3)/12d0) + (ll2**4)/24d0 +
|
|
& zp**8*(967d0/1474560d0 - (469d0*ll2)/368640d0 + (363d0
|
|
&*ll2**2)/573440d0 - (ll2**3)/12288d0) + zp**3*(-((ll2)/
|
|
&48d0) + (ll2**2)/32d0 - (ll2**3)/144d0) + zp**6*(17d0/9
|
|
&216d0 - (5d0*ll2)/1024d0 + (137d0*ll2**2)/46080d0 - (ll
|
|
&2**3)/2304d0) + zp**9*(89d0/245760d0 - (29531d0*ll2)/46
|
|
&448640d0 + (761d0*ll2**2)/2580480d0 - (ll2**3)/27648d0)
|
|
& + zp**4*(1d0/384d0 - (ll2)/64d0 + (11d0*ll2**2)/768d0
|
|
&- (ll2**3)/384d0) + zp**2*((ll2**2)/16d0 - (ll2**3)/48d
|
|
&0) + zp**7*(7d0/6144d0 - (29d0*ll2)/11520d0 + (7d0*ll2*
|
|
&*2)/5120d0 - (ll2**3)/5376d0) + zp**5*(1d0/384d0 - (7d0
|
|
&*ll2)/768d0 + (5d0*ll2**2)/768d0 - (ll2**3)/960d0)
|
|
c End of expansions around x = -1
|
|
|
|
end select
|
|
|
|
c --- set the imaginary part back to zero if it has been modified to
|
|
c --- get the branch cuts right (and should be zero).
|
|
if (bcflag.eq.1) then
|
|
xre = dreal(x)
|
|
|
|
if (n4.eq.0.and.xre.gt.0d0) then
|
|
if (xre.lt.1d0) then
|
|
ris = dcmplx(dreal(ris),0d0)
|
|
endif
|
|
c
|
|
else if (n4.eq.1.and.xre.lt.1d0) then
|
|
if (n1.ne.-1.and.n2.ne.-1.and.n3.ne.-1) then
|
|
ris = dcmplx(dreal(ris),0d0)
|
|
else if (xre.gt.-1d0) then
|
|
ris = dcmplx(dreal(ris),0d0)
|
|
endif
|
|
c
|
|
else if (n4.eq.-1.and.xre.gt.-1d0) then
|
|
if (n1.ne.1.and.n2.ne.1.and.n3.ne.1) then
|
|
ris = dcmplx(dreal(ris),0d0)
|
|
else if (xre.lt.1d0) then
|
|
ris = dcmplx(dreal(ris),0d0)
|
|
endif
|
|
|
|
endif
|
|
endif
|
|
|
|
HPL4arm1=ris
|
|
return
|
|
end function
|