You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

385 lines
9.9 KiB

C=============================================================================
C--- HPLs of Rank 1
C=============================================================================
c --- main forking function
double complex function HPL1(n1, x)
implicit none
integer n1
double complex x,ris
double complex HPL1at0,HPL1at1,HPL1atm1
double complex HPL1ar1,HPL1arm1,HPL1ar0
double complex HPL1else
double precision rad1,radm1,rad0
rad0 = 0.025d0
rad1 = 0.01d0
radm1 = 0.025d0
if (abs(n1).gt.1) then
print*, ""
print*, "****************"
print*, "Error in HPL1:"
print*, "Index",n1," out of range !"
print*, "Aborting..."
print*,"****************"
stop
endif
ris = dcmplx(0d0,0d0)
if (x.eq.dcmplx(0d0,0d0)) then
ris = HPL1at0(n1)
elseif (x.eq.dcmplx(1d0,0d0)) then
ris = HPL1at1(n1)
elseif (x.eq.dcmplx(-1d0,0d0)) then
ris = HPL1atm1(n1)
elseif (abs(x-dcmplx(1d0,0d0)).lt.rad1) then
ris = HPL1ar1(n1,x)
elseif (abs(x+dcmplx(1d0,0d0)).lt.radm1) then
ris = HPL1arm1(n1,x)
elseif (abs(x-dcmplx(0d0,0d0)).lt.rad0) then
ris = HPL1ar0(n1,x)
else
ris = HPL1else(n1,x)
endif
HPL1=ris
return
end
c ------------------------------------------------
double complex function HPL1at0(n1)
implicit none
integer n1
double complex ris
ris = dcmplx(0d0,0d0)
if (n1.eq.0) then
print*, ""
print*, "****************"
print*, "ERROR in HPL1: "
print*, "HPL1(",n1
& ,",0) is divergent!"
print*, "Aborting..."
print*,"****************"
stop
endif
HPL1at0=ris
return
end function
c ------------------------------------------------
double complex function HPL1at1(n1)
implicit none
integer n1
double complex ris
double precision ll2
ll2 = dlog(2d0)
ris = dcmplx(0d0,0d0)
if(n1.ne.1) then
select case (n1)
case(-1)
ris = ll2
case(0)
ris = 0d0
end select
else
print*, ""
print*, "****************"
print*, "ERROR in HPL1: "
print*, "HPL1(",n1
& ,",1) is divergent!"
print*, "Aborting..."
print*,"****************"
stop
endif
HPL1at1=ris
return
end function
c ------------------------------------------------
double complex function HPL1atm1(n1)
implicit none
integer n1
double complex ris,myi
double precision ll2,pi
pi=3.1415926535897932385D0
myi = dcmplx(0d0,1d0)
ll2 = dlog(2d0)
ris = dcmplx(0d0,0d0)
if(n1.ne.-1) then
select case (n1)
case(0)
ris = myi*pi
case(1)
ris = -ll2
end select
else
print*, ""
print*, "****************"
print*, "ERROR in HPL1: "
print*, "HPL1(",n1
& ,",-1) is divergent!"
print*, "Aborting..."
print*,"****************"
stop
endif
HPL1atm1=ris
return
end function
c ------------------------------------------------
double complex function HPL1ar1(n1,x)
implicit none
integer n1,bcflag
double complex x,ris,zp,llzp
double precision pi,ll2,xre
pi=3.1415926535897932385D0
ll2 = dlog(2d0)
ris = dcmplx(0d0,0d0)
bcflag = 0
c--- +i*epsilon to get branch cuts right ---
if (dimag(x).eq.0d0) then
x = x + dcmplx(0d0,1d-60)
bcflag = 1
endif
c---
select case(n1)
case(-1) !-1
zp = 1d0-x
ris = -((zp)/2d0) - (zp**2)/8d0 - (zp**3)/2
&4d0 - (zp**4)/64d0 - (zp**5)/160d0 - (zp**6)/384d0 + ll
&2
case(0) !0
zp = 1d0-x
ris = -zp - (zp**2)/2d0 - (zp**3)/3d0 - (zp
&**4)/4d0 - (zp**5)/5d0 - (zp**6)/6d0
case(1) !1
zp = 1d0-x
llzp = log(zp)
ris = -llzp
c End of expansions around x = +1
end select
c --- set the imaginary part back to zero if it has been modified to
c --- get the branch cuts right (and should be zero).
if (bcflag.eq.1) then
x = x - dcmplx(0d0,1d-60)
xre = dreal(x)
if (n1.eq.0.and.xre.gt.0d0) then
ris = dcmplx(dreal(ris),0d0)
c
else if (n1.eq.1.and.xre.lt.1d0) then
ris = dcmplx(dreal(ris),0d0)
c
else if (n1.eq.-1.and.xre.gt.-1d0) then
ris = dcmplx(dreal(ris),0d0)
endif
endif
HPL1ar1=ris
return
end function
c ------------------------------------------------
double complex function HPL1arm1(n1,x)
implicit none
integer n1,s,szp,bcflag
double complex x,ris,zp,llzp,myi
double precision pi,ll2,xre
pi=3.1415926535897932385D0
ll2 = dlog(2d0)
myi = dcmplx(0d0,1d0)
ris = dcmplx(0d0,0d0)
bcflag = 0
c--- +i*epsilon to get branch cuts right ---
if (dimag(x).eq.0d0) then
x = x + dcmplx(0d0,1d-60)
bcflag = 1
endif
c---
select case(n1)
case(-1) !-1
zp = x+1d0
llzp = log(zp)
ris = llzp
case(0) !0
zp = x+1d0
szp = s(zp)
ris = myi*pi*szp - zp - (zp**2)/2d0 - (zp**
& 3)/3d0 - (zp**4)/4d0 - (zp**5)/5d0 - (zp**6)/6d0 - (zp*
& *7)/7d0 - (zp**8)/8d0 - (zp**9)/9d0
case(1) !1
zp = x+1d0
ris = (zp)/2d0 + (zp**2)/8d0 + (zp**3)/24d0
& + (zp**4)/64d0 + (zp**5)/160d0 + (zp**6)/384d0 + (zp**
& 7)/896d0 + (zp**8)/2048d0 + (zp**9)/4608d0 - ll2
c End of expansions around x = -1
end select
c --- set the imaginary part back to zero if it has been modified to
c --- get the branch cuts right (and should be zero).
if (bcflag.eq.1) then
x = x - dcmplx(0d0,1d-60)
xre = dreal(x)
if (n1.eq.0.and.xre.gt.0d0) then
ris = dcmplx(dreal(ris),0d0)
c
else if (n1.eq.1.and.xre.lt.1d0) then
ris = dcmplx(dreal(ris),0d0)
c
elseif (n1.eq.-1.and.xre.gt.-1d0) then
ris = dcmplx(dreal(ris),0d0)
endif
endif
HPL1arm1=ris
return
end function
c ------------------------------------------------
double complex function HPL1ar0(n1,x)
implicit none
integer n1,bcflag
double complex x,ris,llx
double precision pi,ll2,xre
pi=3.1415926535897932385D0
ll2 = dlog(2d0)
ris = dcmplx(0d0,0d0)
bcflag = 0
c--- +i*epsilon to get branch cuts right ---
if (dimag(x).eq.0d0) then
x = x + dcmplx(0d0,1d-60)
bcflag = 1
endif
c---
select case(n1)
case(-1) !-1
ris = x - (x**2)/2d0 + (x**3)/3d0 - (x**4)/
& 4d0 + (x**5)/5d0 - (x**6)/6d0 + (x**7)/7d0 - (x**8)/8d0
& + (x**9)/9d0 - (x**10)/10d0
case(0) !0
llx = log(x)
ris = llx
case(1) !1
ris = x + (x**2)/2d0 + (x**3)/3d0 + (x**4)/
& 4d0 + (x**5)/5d0 + (x**6)/6d0 + (x**7)/7d0 + (x**8)/8d0
& + (x**9)/9d0 + (x**10)/10d0
c End of expansions around x = 0
end select
c --- set the imaginary part back to zero if it has been modified to
c --- get the branch cuts right (and should be zero).
if (bcflag.eq.1) then
x = x - dcmplx(0d0,1d-60)
xre = dreal(x)
if (n1.eq.0.and.xre.gt.0d0) then
ris = dcmplx(dreal(ris),0d0)
c
else if (n1.eq.1.and.xre.lt.1d0) then
ris = dcmplx(dreal(ris),0d0)
c
elseif (n1.eq.-1.and.xre.gt.-1d0) then
ris = dcmplx(dreal(ris),0d0)
endif
endif
HPL1ar0=ris
return
end function
c ------------------------------------------------
double complex function HPL1else(n1, x)
implicit none
double complex x, ris
integer n1,bcflag
double precision xre
bcflag = 0
ris = dcmplx(0d0,0d0)
c--- +i*epsilon to get branch cuts right ---
if (dimag(x).eq.0d0) then
x = x + dcmplx(0d0,1d-60)
bcflag = 1
endif
c---
select case(n1)
case(-1)
ris =log(1.0d0 + x)
case(0)
ris=log(x)
case(1)
ris=-log(1.0d0 - x)
end select
c --- set the imaginary part back to zero if it has been modified to
c --- get the branch cuts right (and should be zero).
if (bcflag.eq.1) then
x = x - dcmplx(0d0,1d-60)
xre = dreal(x)
if (n1.eq.0.and.xre.gt.0d0) then
ris = dcmplx(dreal(ris),0d0)
c
else if (n1.eq.1.and.xre.lt.1d0) then
ris = dcmplx(dreal(ris),0d0)
c
elseif (n1.eq.-1.and.xre.gt.-1d0) then
ris = dcmplx(dreal(ris),0d0)
endif
endif
HPL1else=ris
return
end
c ------------------------------------------------
c --- Real part of HPL1
double precision function HPL1real(n1,xr,xi)
implicit none
double precision xr,xi
integer n1
double complex x,HPL1
x=dcmplx(xr,xi)
HPL1real = dreal(HPL1(n1,x))
return
end
c --- Imaginary part of HPL1
double precision function HPL1im(n1,xr,xi)
implicit none
double precision xr,xi
integer n1
double complex x,HPL1
x=dcmplx(xr,xi)
HPL1im = dimag(HPL1(n1,x))
return
end