You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

313 lines
8.7 KiB

subroutine Cfill_recur4(p1,p2,p1p2,m1,m2,m3,N0)
implicit none
C Implements the calculation of the formfactors
C for small momenta AND small f(k), as in DD Eq.5.71 and 5.72
C N0 is the offset in the common block
C--- Currently: calculates up to rank 3 with at least one recursion
c--- calculates ranks 4 and 5 with no recursion
c--- calculates C00iiii, C00iiiii components of ranks 6 and 7
include 'lib/TensorReduction/Include/types.f'
include 'lib/TensorReduction/Include/TRconstants.f'
include 'lib/TensorReduction/Include/pvBnames.f'
include 'lib/TensorReduction/Include/pvBv.f'
include 'lib/TensorReduction/Include/pvCnames.f'
include 'lib/TensorReduction/Include/pvCv.f'
include 'lib/TensorReduction/recur/Include/Carraydef.f'
include 'lib/TensorReduction/Include/pvverbose.f'
integer B12,B23,B13,np,ep,N0,pvBcache,
, j,k,i1,i2,i3,i4,i5,step,kmin
parameter(np=2)
real(dp):: p1,p2,p1p2,m1,m2,m3,f(np),
. Gr(np,np),DetGr
complex(dp):: S0000(-2:0),S0000i(np,-2:0),
. Shat3zz(np,-2:0),Shat4zz(np,z1max,-2:0),
. Shat5zz(np,z2max,-2:0),Shat6zz(np,z3max,-2:0),
. Shat5zzzz(np,-2:0),Shat6zzzz(np,z1max,-2:0),
. Shat7zz(np,z4max,-2:0),Shat7zzzz(np,z2max,-2:0),
. Shat1(np,-2:0),Shat2(np,z1max,-2:0),
. Shat3(np,z2max,-2:0),Shat4(np,z3max,-2:0),
. Shat5(np,z4max,-2:0),Shat6(np,z5max,-2:0),Shat7(np,z6max,-2:0)
complex(dp):: bsum1(-2:0),
. bsum0(-2:0),bsum11(-2:0),bsum00(-2:0),
. bsum111(-2:0),bsum1111(-2:0),bsum001(-2:0),
. bsum0011(-2:0),bsum0000(-2:0),
. bsum00001(-2:0),bsum00111(-2:0),bsum11111(-2:0),
. Bzero5(z5max,-2:0),Bzero4(z4max,-2:0),
. Bzero3(z3max,-2:0),Bzero2(z2max,-2:0),Bzero1(z1max,-2:0),
. Bzero0(-2:0)
logical,save:: first=.true.
!$omp threadprivate(first)
if (first) then
first=.false.
call Array2dim
call CArraysetup
endif
c--- Not necessary, routine upgraded now
c if ((m1 .ne. 0d0).or.(m2 .ne. 0d0).or.(m3 .ne. 0d0)) then
c write(6,*) 'nonzero internal masses'
c stop
c endif
B12=pvBcache(p1,m1,m2)
B23=pvBcache(p2,m2,m3)
B13=pvBcache(p1p2,m1,m3)
C----We have changed the sign of fi (different from Dfill) to agree
C----with notation of Denner-Dittmaier
f(1) = -m2 + m1 + p1
f(2) = -m3 + m1 + p1p2
Gr(1,1)=2*p1
Gr(2,2)=2*p1p2
Gr(1,2)=p1+p1p2-p2
Gr(2,1)=Gr(1,2)
call determinant(2,np,Gr,DetGr)
if (pvverbose) write(6,*) 'small F: 2x2 DetGr = ',DetGr
do ep=-2,0
Bsum0(ep)=Bv(bb0+B23,ep)+Bv(bb1+B23,ep)
Bsum1(ep)=Bv(bb1+B23,ep)+Bv(bb11+B23,ep)
Bsum00(ep)=Bv(bb00+B23,ep)+Bv(bb001+B23,ep)
Bsum11(ep)=Bv(bb11+B23,ep)+Bv(bb111+B23,ep)
Bsum001(ep)=Bv(bb001+B23,ep)+Bv(bb0011+B23,ep)
Bsum111(ep)=Bv(bb111+B23,ep)+Bv(bb1111+B23,ep)
Bsum0000(ep)=Bv(bb0000+B23,ep)+Bv(bb00001+B23,ep)
Bsum0011(ep)=Bv(bb0011+B23,ep)+Bv(bb00111+B23,ep)
Bsum1111(ep)=Bv(bb1111+B23,ep)+Bv(bb11111+B23,ep)
Bsum00001(ep)=Bv(bb00001+B23,ep)+Bv(bb000011+B23,ep)
Bsum00111(ep)=Bv(bb00111+B23,ep)+Bv(bb001111+B23,ep)
Bsum11111(ep)=Bv(bb11111+B23,ep)+Bv(bb111111+B23,ep)
enddo
c write(6,'(a9,2f20.15)') 'Bsum0',Bsum0(-1)
c write(6,'(a9,2f20.15)') 'Bsum1',Bsum1(-1)
c write(6,'(a9,2f20.15)') 'Bsum00',Bsum00(-1)
c write(6,'(a9,2f20.15)') 'Bsum11',Bsum11(-1)
c write(6,'(a9,2f20.15)') 'Bsum001',Bsum001(-1)
c write(6,'(a9,2f20.15)') 'Bsum111',Bsum111(-1)
c write(6,'(a9,2f20.15)') 'Bsum0000',Bsum0000(-1)
c write(6,'(a9,2f20.15)') 'Bsum0011',Bsum0011(-1)
c write(6,'(a9,2f20.15)') 'Bsum1111',Bsum1111(-1)
c--- new implementation, in the same style as Dfill_alt.f
c--- (except ShatC.f also includes the zz definitions)
do ep=-2,0
include 'lib/TensorReduction/recur/Include/ShatC.f'
enddo
c--- note: these are the triangle parts of the S00 functions that
c--- are defined above (and commented out), except that these
c--- are a factor of two smaller
do ep=-2,0
include 'lib/TensorReduction/recur/Include/Bzero.f'
enddo
c--- find the smallest f(k) for C00 recursion relation
kmin=1
do k=2,np
if (abs(f(k)) .le. abs(f(kmin))) kmin=k
enddo
if (pvverbose) write(6,*) 'f(kmin) =',f(kmin)
C----Begin the iteration scheme
C set all the Cv to zero
do ep=-2,0
do j=1,Ncc
Cv(j+N0,ep)=czip
enddo
enddo
do step=0,2
if (step .eq. 3) goto 103
if (step .eq. 2) goto 102
if (step .eq. 1) goto 101
if (step .eq. 0) goto 100
C--- step 3
103 continue
C--- step 2: calculate C00iiii, C00iiiii, Ciiii, Ciiiii,
c--- C0000ii, C0000iii, C000000,C000000i [NOT THESE]
102 continue
C--- a) Calculate C00iiii
C--- Small terms of order f(i)*Cijklm,Gr(i,j)*Cijklmn
do i1=1,2
do i2=i1,2
do i3=i2,2
do i4=i3,2
call runCF_00iiii(i1,i2,i3,i4,f,Gr,Shat6,N0)
enddo
enddo
enddo
enddo
c--- b) Calculate C00iiiii
C--- Small terms of order f(i)*Cijklmn,Gr(i,j)*Cijklmno
do i1=1,2
do i2=i1,2
do i3=i2,2
do i4=i3,2
do i5=i4,2
call runCF_00iiiii(i1,i2,i3,i4,i5,f,Gr,Shat7,N0)
enddo
enddo
enddo
enddo
enddo
C--- c) Calculate Ciiiii, requires C00iiiii
C--- Small terms of order Gr(i,j)*Cijklmno
do i1=1,2
do i2=i1,2
do i3=i2,2
do i4=i3,2
do i5=i4,2
call runCF_iiiii(i1,i2,i3,i4,i5,m1,Gr,Bzero5,N0)
enddo
enddo
enddo
enddo
enddo
C--- d) Calculate Ciiii, requires C00iiii
C--- Small terms of order Gr(i,j)*Cijklmn
do i1=1,2
do i2=i1,2
do i3=i2,2
do i4=i3,2
call runCF_iiii(i1,i2,i3,i4,m1,Gr,Bzero4,N0)
enddo
enddo
enddo
enddo
C--- step 1: calculate C00ii, C00iii, Cii, Ciii, C0000, C0000i
101 continue
C--- a) Calculate C00ii
C--- Small terms of order f(i)*Cijk,Gr(i,j)*Cijkl
do i1=1,np
do i2=i1,np
call runCF_00ii(i1,i2,f,Gr,Shat4,N0)
enddo
enddo
c--- b) Calculate C00iii
C--- Small terms of order f(i)*Cijkl,Gr(i,j)*Cijklm
do i1=1,np
do i2=i1,np
do i3=i2,np
call runCF_00iii(i1,i2,i3,f,Gr,Shat5,N0)
enddo
enddo
enddo
C--- c) Calculate Ciii, requires C00iii
C--- Small terms of order Gr(i,j)*Cijklm
do i1=1,np
do i2=i1,np
do i3=i2,np
call runCF_iii(i1,i2,i3,m1,Gr,Bzero3,N0)
enddo
enddo
enddo
C--- d) Calculate Cii, requires C00ii
C--- Small terms of order Gr(i,j)*Cijkl
do i1=1,np
do i2=i1,np
call runCF_ii(i1,i2,m1,Gr,Bzero2,N0)
enddo
enddo
c--- e) Calculate S0000i (needs C00i) - required for C0000i
include 'lib/TensorReduction/recur/Include/S0000iC_def.f'
C--- Fixes C0000i, with corrections of order Gr(i,j)*C00iii
do i1=1,np
call runCP_0000i(i1,Gr,S0000i,N0)
enddo
c--- f) Calculate S0000 (needs C00) - required for C0000
include 'lib/TensorReduction/recur/Include/S0000C_def.f'
C--- Fixes C0000, with corrections of order Gr(i,j)*C00ii
call runCP_0000(Gr,S0000,N0)
C--- step 0: calculate C00,C00i,C0 and Ci
100 continue
C--- a) Calculate C00
C--- Small terms of order f(i)*Ci,Gr(i,j)*Cij
call runCF_00(kmin,f,Gr,Shat2,N0)
C--- b) Calculate C00i
C--- Small terms of order f(i)*Cij,Gr(i,j)*Cijk
do i1=1,np
call runCF_00i(i1,f,Gr,Shat3,N0)
enddo
C--- c) Calculates C0, requires C00
C--- Small terms of order Gr(i,j)*Cij
call runCF_0(m1,Gr,Bzero0,N0)
C--- d) Calculate Ci, requires C00i
C--- Small terms of order Gr(i,j)*Cijk
do i1=1,np
call runCF_i(i1,m1,Gr,Bzero1,N0)
enddo
c--- check the contents of triangle array
c write(6,*) 'C array'
c do ip=1,13
c write(6,'(i3,2e20.12)') ip,Cv(ip+N0,-1)
c enddo
c pause
enddo
c--- check the contents of triangle array
c write(6,*) 'C array'
c do ip=1,Ncc
c if (abs(Csing(ip,p1p2,p1,p2,m1,m2,m3)) .ne. 0d0) then
c write(6,'(i3,2f20.15)') ip,Cv(ip+N0,-1)
c . /Csing(ip,p1p2,p1,p2,m1,m2,m3)
c endif
c enddo
c pause
c--- check the contents of bubble arrays
c write(6,*) 'B12 array'
c do ip=1,Nbb
c write(6,'(i3,2f20.15)') ip,Bv(ip+B12,-1)/Bsing(ip,p1,m1,m2)
c enddo
c write(6,*) 'B13 array'
c do ip=1,Nbb
c write(6,'(i3,2f20.15)') ip,Bv(ip+B13,-1)/Bsing(ip,p1p2,m1,m3)
c enddo
c write(6,*) 'B23 array'
c do ip=1,Nbb
c write(6,'(i3,2f20.15)') ip,Bv(ip+B23,-1)/Bsing(ip,p2,m2,m3)
c enddo
c pause
c 77 format(a3,i2,a5,3('(',e13.6,',',e13.6,') '))
end