You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
9788 lines
321 KiB
9788 lines
321 KiB
! Copyright (C) 2019-2021, respective authors of MCFM.
|
|
!
|
|
! This program is free software: you can redistribute it and/or modify it under
|
|
! the terms of the GNU General Public License as published by the Free Software
|
|
! Foundation, either version 3 of the License, or (at your option) any later
|
|
! version.
|
|
!
|
|
! This program is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
! PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License along with
|
|
! this program. If not, see <http://www.gnu.org/licenses/>
|
|
|
|
*
|
|
* Note added: July 2015, J. Campbell
|
|
* The files in this directory contain the subroutines present in the
|
|
* TDHPL package (described below); they have been split over several
|
|
* files to assist compilation on some machines. In addition, type
|
|
* declarations and OMP directives have been added in order to function
|
|
* properly with the multi-thread version of MCFM. A single-file version
|
|
* has been included here to aid comparison with the original package.
|
|
*
|
|
******************************************************************************
|
|
** tdhpl: a subroutine for the evaluation of
|
|
** two-dimensional harmonic polylogarithms
|
|
** Version 1.0 09/11/2001
|
|
** described in:
|
|
** T.Gehrmann and E.Remiddi: Numerical Evaluation of Two-Dimensional
|
|
** Harmonic Polylogarithms
|
|
** (hep-ph/0111255; CERN-TH/2001/326)
|
|
** the harmonic polylogarithms are defined in:
|
|
** E.Remiddi and J.Vermaseren: Harmonic Polylogarithms
|
|
** (hep-ph/9905237; Int.J.Mod.Phys. A15 (2000) 725)
|
|
** and:
|
|
** T.Gehrmann and E.Remiddi: Two-Loop Master Integrals for gamma*->3jets:
|
|
** the Planar Topologies
|
|
** (hep-ph/0008287; Nucl.Phys. B601(2001) 248)
|
|
** this subroutine invokes the subroutine hplog, which is described in:
|
|
** T.Gehrmann and E.Remiddi: Numerical Evaluation of
|
|
** Harmonic Polylogarithms
|
|
** (hep-ph/0107173; Comp.Phys.Comm. 141(2001) 296)
|
|
** email:
|
|
** Thomas.Gehrmann@cern.ch and Ettore.Remiddi@bo.infn.it
|
|
**
|
|
******************************************************************************
|
|
subroutine tdhpl(y,z,nmax,GYZ1,GYZ2,GYZ3,GYZ4,
|
|
$ HZ1,HZ2,HZ3,HZ4)
|
|
*********************************************************************
|
|
***** Input: *****
|
|
***** y and z are the arguments of the 2dHPL to be evaluated *****
|
|
***** nmax is the maximum weight to be evaluated *****
|
|
***** Output: *****
|
|
***** GYZ1,GYZ2,GYZ3,GYZ4 are the double precision 2dHPL of y,z *****
|
|
***** HZ1,HZ2,HZ3,HZ4 are the double precision 1dHPL of z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer i1,i2,i3,i4
|
|
integer sgi1,sgi2,sgi3,sgi4
|
|
integer iflag,nmax
|
|
real(dp):: x,y,z
|
|
real(dp):: com_tdhpl_zold
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4,GYZ1,GYZ2,GYZ3,GYZ4
|
|
real(dp):: HZ1a,HZ2a,HZ3a,HZ4a,HYZ1a,HYZ2a,HYZ3a,HYZ4a
|
|
dimension HZ1(0:1),HZ2(0:1,0:1),HZ3(0:1,0:1,0:1),
|
|
$ HZ4(0:1,0:1,0:1,0:1)
|
|
dimension GYZ1(0:3),GYZ2(0:3,0:3),GYZ3(0:3,0:3,0:3),
|
|
$ GYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_HPL2OUT/
|
|
$ HZ1a(0:1),HZ2a(0:1,0:1),HZ3a(0:1,0:1,0:1),
|
|
$ HZ4a(0:1,0:1,0:1,0:1),
|
|
$ HYZ1a(0:3),HYZ2a(0:3,0:3),HYZ3a(0:3,0:3,0:3),
|
|
$ HYZ4a(0:3,0:3,0:3,0:3)
|
|
data com_tdhpl_zold/ -999d0/
|
|
save com_tdhpl_zold
|
|
!$omp threadprivate(com_tdhpl_zold,/com_tdhpl_hpl2out/)
|
|
|
|
|
|
x=1d0-y-z
|
|
if (x.lt.0d0.or.x.gt.1.d0) then
|
|
write (*,*) __FILE__
|
|
write(6,991) y,z
|
|
!stop
|
|
endif
|
|
if (y.lt.0d0.or.y.gt.1.d0) then
|
|
write (*,*) __FILE__
|
|
write(6,991) y,z
|
|
!stop
|
|
endif
|
|
if (z.lt.0d0.or.z.gt.1.d0) then
|
|
write (*,*) __FILE__
|
|
write(6,991) y,z
|
|
!stop
|
|
endif
|
|
if (nmax.lt.1.or.nmax.gt.4) then
|
|
write (*,*) __FILE__
|
|
write(6,992) nmax
|
|
!stop
|
|
endif
|
|
|
|
iflag=1
|
|
if (z.eq.com_tdhpl_zold) iflag=2
|
|
com_tdhpl_zold = z
|
|
* write(6,*) iflag
|
|
call fill2dhpl(iflag,nmax,y,z)
|
|
|
|
do i1=0,1
|
|
if (nmax.ge.2) then
|
|
do i2=0,1
|
|
if (nmax.ge.3) then
|
|
do i3=0,1
|
|
if (nmax.eq.4) then
|
|
do i4=0,1
|
|
HZ4(i1,i2,i3,i4) = HZ4a(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
HZ3(i1,i2,i3) = HZ3a(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
HZ2(i1,i2) = HZ2a(i1,i2)
|
|
enddo
|
|
endif
|
|
HZ1(i1) = HZ1a(i1)
|
|
enddo
|
|
do i1=0,3
|
|
if (i1.eq.1.or.i1.eq.2) then
|
|
sgi1=-1
|
|
else
|
|
sgi1=1
|
|
endif
|
|
if (nmax.ge.2) then
|
|
do i2=0,3
|
|
if (i2.eq.1.or.i2.eq.2) then
|
|
sgi2=-1
|
|
else
|
|
sgi2=1
|
|
endif
|
|
if (nmax.ge.3) then
|
|
do i3=0,3
|
|
if (i3.eq.1.or.i3.eq.2) then
|
|
sgi3=-1
|
|
else
|
|
sgi3=1
|
|
endif
|
|
if (nmax.eq.4) then
|
|
do i4=0,3
|
|
if (i4.eq.1.or.i4.eq.2) then
|
|
sgi4=-1
|
|
else
|
|
sgi4=1
|
|
endif
|
|
GYZ4(i1,i2,i3,i4) = sgi1*sgi2*sgi3*sgi4*
|
|
$ HYZ4a(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
GYZ3(i1,i2,i3) = sgi1*sgi2*sgi3*HYZ3a(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
GYZ2(i1,i2) = sgi1*sgi2*HYZ2a(i1,i2)
|
|
enddo
|
|
endif
|
|
GYZ1(i1) = sgi1*HYZ1a(i1)
|
|
enddo
|
|
return
|
|
991 format('Parameters out of range, y=',f9.5,', z=',f9.5)
|
|
992 format('Weight out of range, nmax=',i3)
|
|
end
|
|
|
|
|
|
subroutine fill2dhpl(iflag,nmax,y,z)
|
|
*********************************************************************
|
|
***** fill2dhpl evaluates all 2dhpl writes all *****
|
|
***** 2dhpl(y) and 1dhpl(z) *****
|
|
***** up to weight nmax into HPL2OUT *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
integer i1,i2,i3,i4
|
|
real(dp):: y,z,xi
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4
|
|
dimension com_tdhpl_HZE1(-1:1),com_tdhpl_HZE2(-1:1,-1:1),com_tdhpl_HZE3(-1:1,-1:1,-1:1),
|
|
$ com_tdhpl_HZE4(-1:1,-1:1,-1:1,-1:1)
|
|
common /com_tdhpl_HPL2OUT/
|
|
$ HZ1(0:1),HZ2(0:1,0:1),HZ3(0:1,0:1,0:1),
|
|
$ HZ4(0:1,0:1,0:1,0:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
save com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4
|
|
!$omp threadprivate(com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4,/com_tdhpl_HPL2OUT/)
|
|
if (iflag.eq.1) then
|
|
call get1dhplog0m11(iflag,nmax,z,com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4)
|
|
endif
|
|
do i1=0,1
|
|
if (nmax.ge.2) then
|
|
do i2=0,1
|
|
if (nmax.ge.3) then
|
|
do i3=0,1
|
|
if (nmax.eq.4) then
|
|
do i4=0,1
|
|
HZ4(i1,i2,i3,i4) = com_tdhpl_HZE4(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
HZ3(i1,i2,i3) = com_tdhpl_HZE3(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
HZ2(i1,i2) = com_tdhpl_HZE2(i1,i2)
|
|
enddo
|
|
endif
|
|
HZ1(i1) = com_tdhpl_HZE1(i1)
|
|
enddo
|
|
xi = y/(1d0-z)
|
|
if (xi.le.0.5d0) then
|
|
call get2dhplat0(iflag,nmax,y,z,HYZ1,HYZ2,HYZ3,HYZ4,
|
|
$ com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4)
|
|
* write(6,*) 'call get2dhplat0'
|
|
else
|
|
call get2dhplat1(iflag,nmax,y,z,HYZ1,HYZ2,HYZ3,HYZ4,
|
|
$ com_tdhpl_HZE1,com_tdhpl_HZE2,com_tdhpl_HZE3,com_tdhpl_HZE4)
|
|
* write(6,*) 'call get2dhplat1'
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
subroutine get1dhplog01(iflag,nw,z,HZ1,HZ2,HZ3,HZ4)
|
|
*********************************************************************
|
|
***** get1dhplog01 returns the 1dhpl (0,1) of z *****
|
|
***** up to weight nw *****
|
|
***** evaluation using hplog *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer n1,n2,nw,i1,i2,iflag
|
|
parameter (n1=0)
|
|
parameter (n2=1)
|
|
complex(dp):: Hc1,Hc2,Hc3,Hc4
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4
|
|
real(dp):: Hi1,Hi2,Hi3,Hi4
|
|
real(dp):: z
|
|
dimension Hc1(n1:n2),Hc2(n1:n2,n1:n2),Hc3(n1:n2,n1:n2,n1:n2),
|
|
$ Hc4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
dimension HZ1(n1:n2),HZ2(n1:n2,n1:n2),HZ3(n1:n2,n1:n2,n1:n2),
|
|
$ HZ4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
dimension Hi1(n1:n2),Hi2(n1:n2,n1:n2),Hi3(n1:n2,n1:n2,n1:n2),
|
|
$ Hi4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
call hplog(z,nw,Hc1,Hc2,Hc3,Hc4,
|
|
$ HZ1,HZ2,HZ3,HZ4,Hi1,Hi2,Hi3,Hi4,n1,n2)
|
|
return
|
|
end
|
|
|
|
|
|
subroutine get1dhplog0m11(iflag,nw,z,HZ1,HZ2,HZ3,HZ4)
|
|
*********************************************************************
|
|
***** get1dhplog0m11 returns the 1dhpl (-1,0,1) of z *****
|
|
***** up to weight nw *****
|
|
***** evaluation using hplog *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer n1,n2,nw,i1,i2,iflag
|
|
parameter (n1=-1)
|
|
parameter (n2=1)
|
|
complex(dp):: Hc1,Hc2,Hc3,Hc4
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4
|
|
real(dp):: Hi1,Hi2,Hi3,Hi4
|
|
real(dp):: z
|
|
dimension Hc1(n1:n2),Hc2(n1:n2,n1:n2),Hc3(n1:n2,n1:n2,n1:n2),
|
|
$ Hc4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
dimension HZ1(n1:n2),HZ2(n1:n2,n1:n2),HZ3(n1:n2,n1:n2,n1:n2),
|
|
$ HZ4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
dimension Hi1(n1:n2),Hi2(n1:n2,n1:n2),Hi3(n1:n2,n1:n2,n1:n2),
|
|
$ Hi4(n1:n2,n1:n2,n1:n2,n1:n2)
|
|
call hplog(z,nw,Hc1,Hc2,Hc3,Hc4,
|
|
$ HZ1,HZ2,HZ3,HZ4,Hi1,Hi2,Hi3,Hi4,n1,n2)
|
|
return
|
|
end
|
|
|
|
|
|
subroutine get2dhplat1(iflag,nmax,y,z,HYZ11,HYZ12,HYZ13,HYZ14
|
|
$ ,HZE1,HZE2,HZE3,HZE4)
|
|
*********************************************************************
|
|
***** get2dhplat0 evaluates all 2dhpl from expansions *****
|
|
***** for small 1-y-z=x <(1-z)/2 *****
|
|
***** and subsequent transformation *****
|
|
***** up to weight nmax *****
|
|
***** HZEn must be supplied (needed in cut-separation) *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
real(dp):: x,y,z
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4,HYZ11,HYZ12,HYZ13,HYZ14
|
|
real(dp):: HZE1,HZE2,HZE3,HZE4,HXZ01,HXZ02,HXZ03,HXZ04
|
|
dimension HYZ11(0:3),HYZ12(0:3,0:3),HYZ13(0:3,0:3,0:3),
|
|
$ HYZ14(0:3,0:3,0:3,0:3)
|
|
dimension HXZ01(0:3),HXZ02(0:3,0:3),HXZ03(0:3,0:3,0:3),
|
|
$ HXZ04(0:3,0:3,0:3,0:3)
|
|
dimension HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1)
|
|
dimension HZE1(-1:1),HZE2(-1:1,-1:1),HZE3(-1:1,-1:1,-1:1),
|
|
$ HZE4(-1:1,-1:1,-1:1,-1:1)
|
|
|
|
x=1d0-y-z
|
|
if (x.ge.y) then
|
|
write(6,*) 'Error 1-y-z> y for eval. at 1'
|
|
return
|
|
endif
|
|
call get2dhplat0(iflag,nmax,x,z,HXZ01,HXZ02,HXZ03,HXZ04,
|
|
$ HZE1,HZE2,HZE3,HZE4)
|
|
call swap2dhplxy(iflag,nmax,HXZ01,HXZ02,HXZ03,HXZ04,
|
|
$ HZE1,HZE2,HZE3,HZE4,HYZ11,HYZ12,HYZ13,HYZ14)
|
|
return
|
|
end
|
|
|
|
|
|
subroutine get2dhplat0(iflag,nmax,y,z,HYZ01,HYZ02,HYZ03,HYZ04,
|
|
$ HZE1,HZE2,HZE3,HZE4)
|
|
*********************************************************************
|
|
***** get2dhplat0 evaluates all 2dhpl from expansions *****
|
|
***** for small y<(1-z)/2 *****
|
|
***** up to weight nmax *****
|
|
***** HZEn must be supplied (needed in cut-separation) *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax,n
|
|
integer i1,i2,i3,i4
|
|
real(dp):: y,z,xi
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: HYZ01,HYZ02,HYZ03,HYZ04,HZE1,HZE2,HZE3,HZE4
|
|
dimension HYZ01(0:3),HYZ02(0:3,0:3),HYZ03(0:3,0:3,0:3),
|
|
$ HYZ04(0:3,0:3,0:3,0:3)
|
|
dimension HZE1(-1:1),HZE2(-1:1,-1:1),HZE3(-1:1,-1:1,-1:1),
|
|
$ HZE4(-1:1,-1:1,-1:1,-1:1)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
!$omp threadprivate(/com_tdhpl_HPL2/)
|
|
|
|
do i1=-1,1
|
|
if (nmax.ge.2) then
|
|
do i2=-1,1
|
|
if (nmax.ge.3) then
|
|
do i3=-1,1
|
|
if (nmax.eq.4) then
|
|
do i4=-1,1
|
|
HZ4(i1,i2,i3,i4) = HZE4(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
HZ3(i1,i2,i3) = HZE3(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
HZ2(i1,i2) = HZE2(i1,i2)
|
|
enddo
|
|
endif
|
|
HZ1(i1) = HZE1(i1)
|
|
enddo
|
|
|
|
xi = y/(1d0-z)
|
|
if (xi.gt.0.5d0) then
|
|
write(6,*) 'Error y/(1-z) > 0.5 for eval. at 0'
|
|
return
|
|
endif
|
|
|
|
call fillirr2dhpl10(iflag,nmax,y,z)
|
|
call fillirr2dhpl20(iflag,nmax,y,z)
|
|
call fillirr2dhpl30(iflag,nmax,y,z)
|
|
call makeexpar(y,z)
|
|
|
|
do n=2,nmax
|
|
call fillirr2dhpl210(iflag,n)
|
|
call fillirr2dhpl310(iflag,n)
|
|
if (z.le.0.5d0) then
|
|
call fillirr2dhpl320(iflag,n)
|
|
call fillirr2dhpl321(iflag,n)
|
|
else
|
|
call fillirr2dhpl320e(iflag,n)
|
|
call fillirr2dhpl321e(iflag,n)
|
|
endif
|
|
call fillred2dhpl(iflag,n)
|
|
enddo
|
|
do i1=0,3
|
|
if (nmax.ge.2) then
|
|
do i2=0,3
|
|
if (nmax.ge.3) then
|
|
do i3=0,3
|
|
if (nmax.eq.4) then
|
|
do i4=0,3
|
|
HYZ04(i1,i2,i3,i4) = HYZ4(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
HYZ03(i1,i2,i3) = HYZ3(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
HYZ02(i1,i2) = HYZ2(i1,i2)
|
|
enddo
|
|
endif
|
|
HYZ01(i1) = HYZ1(i1)
|
|
enddo
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl10(iflag,nmax,y,z)
|
|
*********************************************************************
|
|
***** fillirr2dhpl10 fills the irreducible 2dHPL *****
|
|
***** with indices (1,0) up to weight n *****
|
|
***** by evaluating 1dHPL in y *****
|
|
***** applicable for all z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
integer i1,i2,i3,i4
|
|
real(dp):: y,z
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: HY1R,HY2R,HY3R,HY4R
|
|
dimension HY1R(0:1),HY2R(0:1,0:1),HY3R(0:1,0:1,0:1),
|
|
$ HY4R(0:1,0:1,0:1,0:1)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
!$omp threadprivate(/com_tdhpl_HPL2/)
|
|
|
|
call get1dhplog01(iflag,nmax,y,HY1R,HY2R,HY3R,HY4R)
|
|
do i1=0,1
|
|
if (nmax.ge.2) then
|
|
do i2=0,1
|
|
if (nmax.ge.3) then
|
|
do i3=0,1
|
|
if (nmax.eq.4) then
|
|
do i4=0,1
|
|
HYZ4(i1,i2,i3,i4) = HY4R(i1,i2,i3,i4)
|
|
HY4(i1,i2,i3,i4) = HY4R(i1,i2,i3,i4)
|
|
enddo
|
|
endif
|
|
HYZ3(i1,i2,i3) = HY3R(i1,i2,i3)
|
|
HY3(i1,i2,i3) = HY3R(i1,i2,i3)
|
|
enddo
|
|
endif
|
|
HYZ2(i1,i2) = HY2R(i1,i2)
|
|
HY2(i1,i2) = HY2R(i1,i2)
|
|
enddo
|
|
endif
|
|
HYZ1(i1) = HY1R(i1)
|
|
HY1(i1) = HY1R(i1)
|
|
enddo
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl20(iflag,nmax,y,z)
|
|
*********************************************************************
|
|
***** fillirr2dhpl20 fills the irreducible 2dHPL *****
|
|
***** with indices (2,0) up to weight n *****
|
|
***** by evaluating 1dHPL in xi=y/(1-z) *****
|
|
***** applicable for all z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
integer i1,i2,i3,i4
|
|
real(dp):: y,z,xi
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: HXI1,HXI2,HXI3,HXI4
|
|
dimension HXI1(0:1),HXI2(0:1,0:1),HXI3(0:1,0:1,0:1),
|
|
$ HXI4(0:1,0:1,0:1,0:1)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
!$omp threadprivate(/com_tdhpl_HPL2/)
|
|
|
|
xi = y/(1-z)
|
|
call get1dhplog01(iflag,nmax,xi,HXI1,HXI2,HXI3,HXI4)
|
|
i1=1
|
|
if (nmax.ge.2) then
|
|
do i2=0,1
|
|
if (nmax.ge.3) then
|
|
do i3=0,1
|
|
if (nmax.eq.4) then
|
|
do i4=0,1
|
|
HYZ4(2*i4,2*i3,2*i2,2*i1) = HXI4(i4,i3,i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ3(2*i3,2*i2,2*i1) = HXI3(i3,i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ2(2*i2,2*i1) = HXI2(i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ1(2*i1) = HXI1(i1)
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl30(iflag,nmax,y,z)
|
|
*********************************************************************
|
|
***** fillirr2dhpl30 fills the irreducible 2dHPL *****
|
|
***** with indices (3,0) up to weight n *****
|
|
***** by evaluating 1dHPL in xi=-y/z *****
|
|
***** applicable for all z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
integer i1,i2,i3,i4
|
|
real(dp):: y,z,xi
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: HXI1,HXI2,HXI3,HXI4
|
|
dimension HXI1(0:1),HXI2(0:1,0:1),HXI3(0:1,0:1,0:1),
|
|
$ HXI4(0:1,0:1,0:1,0:1)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
!$omp threadprivate(/com_tdhpl_HPL2/)
|
|
|
|
xi = -y/z
|
|
call get1dhplog01(iflag,nmax,xi,HXI1,HXI2,HXI3,HXI4)
|
|
i1=1
|
|
if (nmax.ge.2) then
|
|
do i2=0,1
|
|
if (nmax.ge.3) then
|
|
do i3=0,1
|
|
if (nmax.eq.4) then
|
|
do i4=0,1
|
|
HYZ4(3*i4,3*i3,3*i2,3*i1) = (-1)**(i4+i3+i2+i1)
|
|
$ *HXI4(i4,i3,i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ3(3*i3,3*i2,3*i1) = (-1)**(i3+i2+i1)
|
|
$ *HXI3(i3,i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ2(3*i2,3*i1) = (-1)**(i2+i1)*HXI2(i2,i1)
|
|
enddo
|
|
endif
|
|
HYZ1(3*i1) = (-1)**i1*HXI1(i1)
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl210(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl210(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (2,1,0) *****
|
|
***** up to weight n using the EXPANDED expressions for the *****
|
|
***** z-dependent expansion coefficients *****
|
|
***** applicable for all z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: CsHYZ2,CsHYZ3,CsHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
dimension CsHYZ2(0:3,0:3,22),CsHYZ3(0:3,0:3,0:3,22),
|
|
$ CsHYZ4(0:3,0:3,0:3,0:3,22)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_s/
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
save CsHYZ2,CsHYZ3,CsHYZ4
|
|
!$omp threadprivate(CsHYZ2,CsHYZ3,CsHYZ4,/com_tdhpl_s/,/com_tdhpl_HPL2/)
|
|
|
|
if (iflag.eq.1) then
|
|
call fillcoeff2dhpl210(iflag,n,CsHYZ2,CsHYZ3,CsHYZ4)
|
|
endif
|
|
* 2001-04-03:16:14:02.hpl
|
|
* <- HPLexpand.210t
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
if (n.eq.2) then
|
|
HYZ2(2,1) =
|
|
$ + s02 * CsHYZ2(2,1,02)
|
|
$ + s03 * CsHYZ2(2,1,03)
|
|
$ + s04 * CsHYZ2(2,1,04)
|
|
$ + s05 * CsHYZ2(2,1,05)
|
|
$ + s06 * CsHYZ2(2,1,06)
|
|
$ + s07 * CsHYZ2(2,1,07)
|
|
$ + s08 * CsHYZ2(2,1,08)
|
|
$ + s09 * CsHYZ2(2,1,09)
|
|
$ + s10 * CsHYZ2(2,1,10)
|
|
$ + s11 * CsHYZ2(2,1,11)
|
|
$ + s12 * CsHYZ2(2,1,12)
|
|
$ + s13 * CsHYZ2(2,1,13)
|
|
$ + s14 * CsHYZ2(2,1,14)
|
|
$ + s15 * CsHYZ2(2,1,15)
|
|
$ + s16 * CsHYZ2(2,1,16)
|
|
$ + s17 * CsHYZ2(2,1,17)
|
|
$ + s18 * CsHYZ2(2,1,18)
|
|
$ + s19 * CsHYZ2(2,1,19)
|
|
$ + s20 * CsHYZ2(2,1,20)
|
|
$ + s21 * CsHYZ2(2,1,21)
|
|
endif
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(0,2,1) =
|
|
$ + s02 * CsHYZ3(0,2,1,02)
|
|
$ + s03 * CsHYZ3(0,2,1,03)
|
|
$ + s04 * CsHYZ3(0,2,1,04)
|
|
$ + s05 * CsHYZ3(0,2,1,05)
|
|
$ + s06 * CsHYZ3(0,2,1,06)
|
|
$ + s07 * CsHYZ3(0,2,1,07)
|
|
$ + s08 * CsHYZ3(0,2,1,08)
|
|
$ + s09 * CsHYZ3(0,2,1,09)
|
|
$ + s10 * CsHYZ3(0,2,1,10)
|
|
$ + s11 * CsHYZ3(0,2,1,11)
|
|
$ + s12 * CsHYZ3(0,2,1,12)
|
|
$ + s13 * CsHYZ3(0,2,1,13)
|
|
$ + s14 * CsHYZ3(0,2,1,14)
|
|
$ + s15 * CsHYZ3(0,2,1,15)
|
|
$ + s16 * CsHYZ3(0,2,1,16)
|
|
$ + s17 * CsHYZ3(0,2,1,17)
|
|
$ + s18 * CsHYZ3(0,2,1,18)
|
|
$ + s19 * CsHYZ3(0,2,1,19)
|
|
$ + s20 * CsHYZ3(0,2,1,20)
|
|
HYZ3(2,0,1) =
|
|
$ + s02 * CsHYZ3(2,0,1,02)
|
|
$ + s03 * CsHYZ3(2,0,1,03)
|
|
$ + s04 * CsHYZ3(2,0,1,04)
|
|
$ + s05 * CsHYZ3(2,0,1,05)
|
|
$ + s06 * CsHYZ3(2,0,1,06)
|
|
$ + s07 * CsHYZ3(2,0,1,07)
|
|
$ + s08 * CsHYZ3(2,0,1,08)
|
|
$ + s09 * CsHYZ3(2,0,1,09)
|
|
$ + s10 * CsHYZ3(2,0,1,10)
|
|
$ + s11 * CsHYZ3(2,0,1,11)
|
|
$ + s12 * CsHYZ3(2,0,1,12)
|
|
$ + s13 * CsHYZ3(2,0,1,13)
|
|
$ + s14 * CsHYZ3(2,0,1,14)
|
|
$ + s15 * CsHYZ3(2,0,1,15)
|
|
$ + s16 * CsHYZ3(2,0,1,16)
|
|
$ + s17 * CsHYZ3(2,0,1,17)
|
|
$ + s18 * CsHYZ3(2,0,1,18)
|
|
$ + s19 * CsHYZ3(2,0,1,19)
|
|
$ + s20 * CsHYZ3(2,0,1,20)
|
|
HYZ3(2,1,1) =
|
|
$ + s03 * CsHYZ3(2,1,1,03)
|
|
$ + s04 * CsHYZ3(2,1,1,04)
|
|
$ + s05 * CsHYZ3(2,1,1,05)
|
|
$ + s06 * CsHYZ3(2,1,1,06)
|
|
$ + s07 * CsHYZ3(2,1,1,07)
|
|
$ + s08 * CsHYZ3(2,1,1,08)
|
|
$ + s09 * CsHYZ3(2,1,1,09)
|
|
$ + s10 * CsHYZ3(2,1,1,10)
|
|
$ + s11 * CsHYZ3(2,1,1,11)
|
|
$ + s12 * CsHYZ3(2,1,1,12)
|
|
$ + s13 * CsHYZ3(2,1,1,13)
|
|
$ + s14 * CsHYZ3(2,1,1,14)
|
|
$ + s15 * CsHYZ3(2,1,1,15)
|
|
$ + s16 * CsHYZ3(2,1,1,16)
|
|
$ + s17 * CsHYZ3(2,1,1,17)
|
|
$ + s18 * CsHYZ3(2,1,1,18)
|
|
$ + s19 * CsHYZ3(2,1,1,19)
|
|
$ + s20 * CsHYZ3(2,1,1,20)
|
|
$ + s21 * CsHYZ3(2,1,1,21)
|
|
$ + s22 * CsHYZ3(2,1,1,22)
|
|
HYZ3(2,2,1) =
|
|
$ + s03 * CsHYZ3(2,2,1,03)
|
|
$ + s04 * CsHYZ3(2,2,1,04)
|
|
$ + s05 * CsHYZ3(2,2,1,05)
|
|
$ + s06 * CsHYZ3(2,2,1,06)
|
|
$ + s07 * CsHYZ3(2,2,1,07)
|
|
$ + s08 * CsHYZ3(2,2,1,08)
|
|
$ + s09 * CsHYZ3(2,2,1,09)
|
|
$ + s10 * CsHYZ3(2,2,1,10)
|
|
$ + s11 * CsHYZ3(2,2,1,11)
|
|
$ + s12 * CsHYZ3(2,2,1,12)
|
|
$ + s13 * CsHYZ3(2,2,1,13)
|
|
$ + s14 * CsHYZ3(2,2,1,14)
|
|
$ + s15 * CsHYZ3(2,2,1,15)
|
|
$ + s16 * CsHYZ3(2,2,1,16)
|
|
$ + s17 * CsHYZ3(2,2,1,17)
|
|
$ + s18 * CsHYZ3(2,2,1,18)
|
|
$ + s19 * CsHYZ3(2,2,1,19)
|
|
$ + s20 * CsHYZ3(2,2,1,20)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,0,2,1) =
|
|
$ + s02 * CsHYZ4(0,0,2,1,02)
|
|
$ + s03 * CsHYZ4(0,0,2,1,03)
|
|
$ + s04 * CsHYZ4(0,0,2,1,04)
|
|
$ + s05 * CsHYZ4(0,0,2,1,05)
|
|
$ + s06 * CsHYZ4(0,0,2,1,06)
|
|
$ + s07 * CsHYZ4(0,0,2,1,07)
|
|
$ + s08 * CsHYZ4(0,0,2,1,08)
|
|
$ + s09 * CsHYZ4(0,0,2,1,09)
|
|
$ + s10 * CsHYZ4(0,0,2,1,10)
|
|
$ + s11 * CsHYZ4(0,0,2,1,11)
|
|
$ + s12 * CsHYZ4(0,0,2,1,12)
|
|
$ + s13 * CsHYZ4(0,0,2,1,13)
|
|
$ + s14 * CsHYZ4(0,0,2,1,14)
|
|
$ + s15 * CsHYZ4(0,0,2,1,15)
|
|
$ + s16 * CsHYZ4(0,0,2,1,16)
|
|
$ + s17 * CsHYZ4(0,0,2,1,17)
|
|
$ + s18 * CsHYZ4(0,0,2,1,18)
|
|
HYZ4(0,1,2,1) =
|
|
$ + s03 * CsHYZ4(0,1,2,1,03)
|
|
$ + s04 * CsHYZ4(0,1,2,1,04)
|
|
$ + s05 * CsHYZ4(0,1,2,1,05)
|
|
$ + s06 * CsHYZ4(0,1,2,1,06)
|
|
$ + s07 * CsHYZ4(0,1,2,1,07)
|
|
$ + s08 * CsHYZ4(0,1,2,1,08)
|
|
$ + s09 * CsHYZ4(0,1,2,1,09)
|
|
$ + s10 * CsHYZ4(0,1,2,1,10)
|
|
$ + s11 * CsHYZ4(0,1,2,1,11)
|
|
$ + s12 * CsHYZ4(0,1,2,1,12)
|
|
$ + s13 * CsHYZ4(0,1,2,1,13)
|
|
$ + s14 * CsHYZ4(0,1,2,1,14)
|
|
$ + s15 * CsHYZ4(0,1,2,1,15)
|
|
$ + s16 * CsHYZ4(0,1,2,1,16)
|
|
$ + s17 * CsHYZ4(0,1,2,1,17)
|
|
$ + s18 * CsHYZ4(0,1,2,1,18)
|
|
$ + s19 * CsHYZ4(0,1,2,1,19)
|
|
$ + s20 * CsHYZ4(0,1,2,1,20)
|
|
$ + s21 * CsHYZ4(0,1,2,1,21)
|
|
HYZ4(0,2,1,1) =
|
|
$ + s03 * CsHYZ4(0,2,1,1,03)
|
|
$ + s04 * CsHYZ4(0,2,1,1,04)
|
|
$ + s05 * CsHYZ4(0,2,1,1,05)
|
|
$ + s06 * CsHYZ4(0,2,1,1,06)
|
|
$ + s07 * CsHYZ4(0,2,1,1,07)
|
|
$ + s08 * CsHYZ4(0,2,1,1,08)
|
|
$ + s09 * CsHYZ4(0,2,1,1,09)
|
|
$ + s10 * CsHYZ4(0,2,1,1,10)
|
|
$ + s11 * CsHYZ4(0,2,1,1,11)
|
|
$ + s12 * CsHYZ4(0,2,1,1,12)
|
|
$ + s13 * CsHYZ4(0,2,1,1,13)
|
|
$ + s14 * CsHYZ4(0,2,1,1,14)
|
|
$ + s15 * CsHYZ4(0,2,1,1,15)
|
|
$ + s16 * CsHYZ4(0,2,1,1,16)
|
|
$ + s17 * CsHYZ4(0,2,1,1,17)
|
|
$ + s18 * CsHYZ4(0,2,1,1,18)
|
|
$ + s19 * CsHYZ4(0,2,1,1,19)
|
|
$ + s20 * CsHYZ4(0,2,1,1,20)
|
|
HYZ4(0,2,0,1) =
|
|
$ + s02 * CsHYZ4(0,2,0,1,02)
|
|
$ + s03 * CsHYZ4(0,2,0,1,03)
|
|
$ + s04 * CsHYZ4(0,2,0,1,04)
|
|
$ + s05 * CsHYZ4(0,2,0,1,05)
|
|
$ + s06 * CsHYZ4(0,2,0,1,06)
|
|
$ + s07 * CsHYZ4(0,2,0,1,07)
|
|
$ + s08 * CsHYZ4(0,2,0,1,08)
|
|
$ + s09 * CsHYZ4(0,2,0,1,09)
|
|
$ + s10 * CsHYZ4(0,2,0,1,10)
|
|
$ + s11 * CsHYZ4(0,2,0,1,11)
|
|
$ + s12 * CsHYZ4(0,2,0,1,12)
|
|
$ + s13 * CsHYZ4(0,2,0,1,13)
|
|
$ + s14 * CsHYZ4(0,2,0,1,14)
|
|
$ + s15 * CsHYZ4(0,2,0,1,15)
|
|
$ + s16 * CsHYZ4(0,2,0,1,16)
|
|
$ + s17 * CsHYZ4(0,2,0,1,17)
|
|
$ + s18 * CsHYZ4(0,2,0,1,18)
|
|
HYZ4(0,2,2,1) =
|
|
$ + s03 * CsHYZ4(0,2,2,1,03)
|
|
$ + s04 * CsHYZ4(0,2,2,1,04)
|
|
$ + s05 * CsHYZ4(0,2,2,1,05)
|
|
$ + s06 * CsHYZ4(0,2,2,1,06)
|
|
$ + s07 * CsHYZ4(0,2,2,1,07)
|
|
$ + s08 * CsHYZ4(0,2,2,1,08)
|
|
$ + s09 * CsHYZ4(0,2,2,1,09)
|
|
$ + s10 * CsHYZ4(0,2,2,1,10)
|
|
$ + s11 * CsHYZ4(0,2,2,1,11)
|
|
$ + s12 * CsHYZ4(0,2,2,1,12)
|
|
$ + s13 * CsHYZ4(0,2,2,1,13)
|
|
$ + s14 * CsHYZ4(0,2,2,1,14)
|
|
$ + s15 * CsHYZ4(0,2,2,1,15)
|
|
$ + s16 * CsHYZ4(0,2,2,1,16)
|
|
$ + s17 * CsHYZ4(0,2,2,1,17)
|
|
$ + s18 * CsHYZ4(0,2,2,1,18)
|
|
$ + s19 * CsHYZ4(0,2,2,1,19)
|
|
HYZ4(2,0,0,1) =
|
|
$ + s02 * CsHYZ4(2,0,0,1,02)
|
|
$ + s03 * CsHYZ4(2,0,0,1,03)
|
|
$ + s04 * CsHYZ4(2,0,0,1,04)
|
|
$ + s05 * CsHYZ4(2,0,0,1,05)
|
|
$ + s06 * CsHYZ4(2,0,0,1,06)
|
|
$ + s07 * CsHYZ4(2,0,0,1,07)
|
|
$ + s08 * CsHYZ4(2,0,0,1,08)
|
|
$ + s09 * CsHYZ4(2,0,0,1,09)
|
|
$ + s10 * CsHYZ4(2,0,0,1,10)
|
|
$ + s11 * CsHYZ4(2,0,0,1,11)
|
|
$ + s12 * CsHYZ4(2,0,0,1,12)
|
|
$ + s13 * CsHYZ4(2,0,0,1,13)
|
|
$ + s14 * CsHYZ4(2,0,0,1,14)
|
|
$ + s15 * CsHYZ4(2,0,0,1,15)
|
|
$ + s16 * CsHYZ4(2,0,0,1,16)
|
|
$ + s17 * CsHYZ4(2,0,0,1,17)
|
|
$ + s18 * CsHYZ4(2,0,0,1,18)
|
|
HYZ4(2,0,1,1) =
|
|
$ + s03 * CsHYZ4(2,0,1,1,03)
|
|
$ + s04 * CsHYZ4(2,0,1,1,04)
|
|
$ + s05 * CsHYZ4(2,0,1,1,05)
|
|
$ + s06 * CsHYZ4(2,0,1,1,06)
|
|
$ + s07 * CsHYZ4(2,0,1,1,07)
|
|
$ + s08 * CsHYZ4(2,0,1,1,08)
|
|
$ + s09 * CsHYZ4(2,0,1,1,09)
|
|
$ + s10 * CsHYZ4(2,0,1,1,10)
|
|
$ + s11 * CsHYZ4(2,0,1,1,11)
|
|
$ + s12 * CsHYZ4(2,0,1,1,12)
|
|
$ + s13 * CsHYZ4(2,0,1,1,13)
|
|
$ + s14 * CsHYZ4(2,0,1,1,14)
|
|
$ + s15 * CsHYZ4(2,0,1,1,15)
|
|
$ + s16 * CsHYZ4(2,0,1,1,16)
|
|
$ + s17 * CsHYZ4(2,0,1,1,17)
|
|
$ + s18 * CsHYZ4(2,0,1,1,18)
|
|
$ + s19 * CsHYZ4(2,0,1,1,19)
|
|
$ + s20 * CsHYZ4(2,0,1,1,20)
|
|
HYZ4(2,0,2,1) =
|
|
$ + s03 * CsHYZ4(2,0,2,1,03)
|
|
$ + s04 * CsHYZ4(2,0,2,1,04)
|
|
$ + s05 * CsHYZ4(2,0,2,1,05)
|
|
$ + s06 * CsHYZ4(2,0,2,1,06)
|
|
$ + s07 * CsHYZ4(2,0,2,1,07)
|
|
$ + s08 * CsHYZ4(2,0,2,1,08)
|
|
$ + s09 * CsHYZ4(2,0,2,1,09)
|
|
$ + s10 * CsHYZ4(2,0,2,1,10)
|
|
$ + s11 * CsHYZ4(2,0,2,1,11)
|
|
$ + s12 * CsHYZ4(2,0,2,1,12)
|
|
$ + s13 * CsHYZ4(2,0,2,1,13)
|
|
$ + s14 * CsHYZ4(2,0,2,1,14)
|
|
$ + s15 * CsHYZ4(2,0,2,1,15)
|
|
$ + s16 * CsHYZ4(2,0,2,1,16)
|
|
$ + s17 * CsHYZ4(2,0,2,1,17)
|
|
$ + s18 * CsHYZ4(2,0,2,1,18)
|
|
$ + s19 * CsHYZ4(2,0,2,1,19)
|
|
HYZ4(2,1,1,1) =
|
|
$ + s04 * CsHYZ4(2,1,1,1,04)
|
|
$ + s05 * CsHYZ4(2,1,1,1,05)
|
|
$ + s06 * CsHYZ4(2,1,1,1,06)
|
|
$ + s07 * CsHYZ4(2,1,1,1,07)
|
|
$ + s08 * CsHYZ4(2,1,1,1,08)
|
|
$ + s09 * CsHYZ4(2,1,1,1,09)
|
|
$ + s10 * CsHYZ4(2,1,1,1,10)
|
|
$ + s11 * CsHYZ4(2,1,1,1,11)
|
|
$ + s12 * CsHYZ4(2,1,1,1,12)
|
|
$ + s13 * CsHYZ4(2,1,1,1,13)
|
|
$ + s14 * CsHYZ4(2,1,1,1,14)
|
|
$ + s15 * CsHYZ4(2,1,1,1,15)
|
|
$ + s16 * CsHYZ4(2,1,1,1,16)
|
|
$ + s17 * CsHYZ4(2,1,1,1,17)
|
|
$ + s18 * CsHYZ4(2,1,1,1,18)
|
|
$ + s19 * CsHYZ4(2,1,1,1,19)
|
|
$ + s20 * CsHYZ4(2,1,1,1,20)
|
|
$ + s21 * CsHYZ4(2,1,1,1,21)
|
|
$ + s22 * CsHYZ4(2,1,1,1,22)
|
|
HYZ4(2,2,0,1) =
|
|
$ + s03 * CsHYZ4(2,2,0,1,03)
|
|
$ + s04 * CsHYZ4(2,2,0,1,04)
|
|
$ + s05 * CsHYZ4(2,2,0,1,05)
|
|
$ + s06 * CsHYZ4(2,2,0,1,06)
|
|
$ + s07 * CsHYZ4(2,2,0,1,07)
|
|
$ + s08 * CsHYZ4(2,2,0,1,08)
|
|
$ + s09 * CsHYZ4(2,2,0,1,09)
|
|
$ + s10 * CsHYZ4(2,2,0,1,10)
|
|
$ + s11 * CsHYZ4(2,2,0,1,11)
|
|
$ + s12 * CsHYZ4(2,2,0,1,12)
|
|
$ + s13 * CsHYZ4(2,2,0,1,13)
|
|
$ + s14 * CsHYZ4(2,2,0,1,14)
|
|
$ + s15 * CsHYZ4(2,2,0,1,15)
|
|
$ + s16 * CsHYZ4(2,2,0,1,16)
|
|
$ + s17 * CsHYZ4(2,2,0,1,17)
|
|
$ + s18 * CsHYZ4(2,2,0,1,18)
|
|
$ + s19 * CsHYZ4(2,2,0,1,19)
|
|
HYZ4(2,2,1,1) =
|
|
$ + s04 * CsHYZ4(2,2,1,1,04)
|
|
$ + s05 * CsHYZ4(2,2,1,1,05)
|
|
$ + s06 * CsHYZ4(2,2,1,1,06)
|
|
$ + s07 * CsHYZ4(2,2,1,1,07)
|
|
$ + s08 * CsHYZ4(2,2,1,1,08)
|
|
$ + s09 * CsHYZ4(2,2,1,1,09)
|
|
$ + s10 * CsHYZ4(2,2,1,1,10)
|
|
$ + s11 * CsHYZ4(2,2,1,1,11)
|
|
$ + s12 * CsHYZ4(2,2,1,1,12)
|
|
$ + s13 * CsHYZ4(2,2,1,1,13)
|
|
$ + s14 * CsHYZ4(2,2,1,1,14)
|
|
$ + s15 * CsHYZ4(2,2,1,1,15)
|
|
$ + s16 * CsHYZ4(2,2,1,1,16)
|
|
$ + s17 * CsHYZ4(2,2,1,1,17)
|
|
$ + s18 * CsHYZ4(2,2,1,1,18)
|
|
$ + s19 * CsHYZ4(2,2,1,1,19)
|
|
$ + s20 * CsHYZ4(2,2,1,1,20)
|
|
$ + s21 * CsHYZ4(2,2,1,1,21)
|
|
HYZ4(2,2,2,1) =
|
|
$ + s04 * CsHYZ4(2,2,2,1,04)
|
|
$ + s05 * CsHYZ4(2,2,2,1,05)
|
|
$ + s06 * CsHYZ4(2,2,2,1,06)
|
|
$ + s07 * CsHYZ4(2,2,2,1,07)
|
|
$ + s08 * CsHYZ4(2,2,2,1,08)
|
|
$ + s09 * CsHYZ4(2,2,2,1,09)
|
|
$ + s10 * CsHYZ4(2,2,2,1,10)
|
|
$ + s11 * CsHYZ4(2,2,2,1,11)
|
|
$ + s12 * CsHYZ4(2,2,2,1,12)
|
|
$ + s13 * CsHYZ4(2,2,2,1,13)
|
|
$ + s14 * CsHYZ4(2,2,2,1,14)
|
|
$ + s15 * CsHYZ4(2,2,2,1,15)
|
|
$ + s16 * CsHYZ4(2,2,2,1,16)
|
|
$ + s17 * CsHYZ4(2,2,2,1,17)
|
|
$ + s18 * CsHYZ4(2,2,2,1,18)
|
|
$ + s19 * CsHYZ4(2,2,2,1,19)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
subroutine fillirr2dhpl310(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl310(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (3,1,0) *****
|
|
***** up to weight n using the EXPANDED expressions for the *****
|
|
***** z-dependent expansion coefficients *****
|
|
***** applicable for all z *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
integer nmax
|
|
real(dp):: CrHYZ2,CrHYZ3,CrHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ r01,r02,r03,r04,r05,r06,r07,r08,r09,r10,
|
|
$ r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22
|
|
dimension CrHYZ2(0:3,0:3,18),CrHYZ3(0:3,0:3,0:3,18),
|
|
$ CrHYZ4(0:3,0:3,0:3,0:3,18)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_rtdhpl/
|
|
$ r01,r02,r03,r04,r05,r06,r07,r08,r09,r10,
|
|
$ r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22
|
|
save CrHYZ2,CrHYZ3,CrHYZ4
|
|
!$omp threadprivate(CrHYZ2,CrHYZ3,CrHYZ4,/com_tdhpl_rtdhpl/,/com_tdhpl_HPL2/)
|
|
|
|
if (iflag.eq.1) then
|
|
call fillcoeff2dhpl310(iflag,n,CrHYZ2,CrHYZ3,CrHYZ4)
|
|
endif
|
|
* 2001-04-03:17:41:05.hpl
|
|
* <- HPLexpand.310t
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
if (n.eq.2) then
|
|
HYZ2(3,1) =
|
|
$ + r01 * CrHYZ2(3,1,01)
|
|
$ + r02 * CrHYZ2(3,1,02)
|
|
$ + r03 * CrHYZ2(3,1,03)
|
|
$ + r04 * CrHYZ2(3,1,04)
|
|
$ + r05 * CrHYZ2(3,1,05)
|
|
$ + r06 * CrHYZ2(3,1,06)
|
|
$ + r07 * CrHYZ2(3,1,07)
|
|
$ + r08 * CrHYZ2(3,1,08)
|
|
$ + r09 * CrHYZ2(3,1,09)
|
|
$ + r10 * CrHYZ2(3,1,10)
|
|
$ + r11 * CrHYZ2(3,1,11)
|
|
$ + r12 * CrHYZ2(3,1,12)
|
|
$ + r13 * CrHYZ2(3,1,13)
|
|
$ + r14 * CrHYZ2(3,1,14)
|
|
$ + r15 * CrHYZ2(3,1,15)
|
|
$ + r16 * CrHYZ2(3,1,16)
|
|
$ + r17 * CrHYZ2(3,1,17)
|
|
$ - HZ1( -1)*HYZ1(3)
|
|
endif
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(0,3,1) =
|
|
$ + r01 * CrHYZ3(0,3,1,01)
|
|
$ + r02 * CrHYZ3(0,3,1,02)
|
|
$ + r03 * CrHYZ3(0,3,1,03)
|
|
$ + r04 * CrHYZ3(0,3,1,04)
|
|
$ + r05 * CrHYZ3(0,3,1,05)
|
|
$ + r06 * CrHYZ3(0,3,1,06)
|
|
$ + r07 * CrHYZ3(0,3,1,07)
|
|
$ + r08 * CrHYZ3(0,3,1,08)
|
|
$ + r09 * CrHYZ3(0,3,1,09)
|
|
$ + r10 * CrHYZ3(0,3,1,10)
|
|
$ + r11 * CrHYZ3(0,3,1,11)
|
|
$ + r12 * CrHYZ3(0,3,1,12)
|
|
$ + r13 * CrHYZ3(0,3,1,13)
|
|
$ + r14 * CrHYZ3(0,3,1,14)
|
|
$ + r15 * CrHYZ3(0,3,1,15)
|
|
$ + r16 * CrHYZ3(0,3,1,16)
|
|
$ + r17 * CrHYZ3(0,3,1,17)
|
|
$ - HZ1( -1)*HYZ2(0,3)
|
|
HYZ3(3,0,1) =
|
|
$ + r01 * CrHYZ3(3,0,1,01)
|
|
$ + r02 * CrHYZ3(3,0,1,02)
|
|
$ + r03 * CrHYZ3(3,0,1,03)
|
|
$ + r04 * CrHYZ3(3,0,1,04)
|
|
$ + r05 * CrHYZ3(3,0,1,05)
|
|
$ + r06 * CrHYZ3(3,0,1,06)
|
|
$ + r07 * CrHYZ3(3,0,1,07)
|
|
$ + r08 * CrHYZ3(3,0,1,08)
|
|
$ + r09 * CrHYZ3(3,0,1,09)
|
|
$ + r10 * CrHYZ3(3,0,1,10)
|
|
$ + r11 * CrHYZ3(3,0,1,11)
|
|
$ + r12 * CrHYZ3(3,0,1,12)
|
|
$ + r13 * CrHYZ3(3,0,1,13)
|
|
$ + r14 * CrHYZ3(3,0,1,14)
|
|
$ + r15 * CrHYZ3(3,0,1,15)
|
|
$ + r16 * CrHYZ3(3,0,1,16)
|
|
$ + r17 * CrHYZ3(3,0,1,17)
|
|
$ - HZ2(0, -1)*HYZ1(3)
|
|
HYZ3(3,1,1) =
|
|
$ + r01 * CrHYZ3(3,1,1,01)
|
|
$ + r02 * CrHYZ3(3,1,1,02)
|
|
$ + r03 * CrHYZ3(3,1,1,03)
|
|
$ + r04 * CrHYZ3(3,1,1,04)
|
|
$ + r05 * CrHYZ3(3,1,1,05)
|
|
$ + r06 * CrHYZ3(3,1,1,06)
|
|
$ + r07 * CrHYZ3(3,1,1,07)
|
|
$ + r08 * CrHYZ3(3,1,1,08)
|
|
$ + r09 * CrHYZ3(3,1,1,09)
|
|
$ + r10 * CrHYZ3(3,1,1,10)
|
|
$ + r11 * CrHYZ3(3,1,1,11)
|
|
$ + r12 * CrHYZ3(3,1,1,12)
|
|
$ + r13 * CrHYZ3(3,1,1,13)
|
|
$ + r14 * CrHYZ3(3,1,1,14)
|
|
$ + r15 * CrHYZ3(3,1,1,15)
|
|
$ + r16 * CrHYZ3(3,1,1,16)
|
|
$ + r17 * CrHYZ3(3,1,1,17)
|
|
$ + HZ2( -1,-1)*HYZ1(3)
|
|
HYZ3(3,3,1) =
|
|
$ + r01 * CrHYZ3(3,3,1,01)
|
|
$ + r02 * CrHYZ3(3,3,1,02)
|
|
$ + r03 * CrHYZ3(3,3,1,03)
|
|
$ + r04 * CrHYZ3(3,3,1,04)
|
|
$ + r05 * CrHYZ3(3,3,1,05)
|
|
$ + r06 * CrHYZ3(3,3,1,06)
|
|
$ + r07 * CrHYZ3(3,3,1,07)
|
|
$ + r08 * CrHYZ3(3,3,1,08)
|
|
$ + r09 * CrHYZ3(3,3,1,09)
|
|
$ + r10 * CrHYZ3(3,3,1,10)
|
|
$ + r11 * CrHYZ3(3,3,1,11)
|
|
$ + r12 * CrHYZ3(3,3,1,12)
|
|
$ + r13 * CrHYZ3(3,3,1,13)
|
|
$ + r14 * CrHYZ3(3,3,1,14)
|
|
$ + r15 * CrHYZ3(3,3,1,15)
|
|
$ + r16 * CrHYZ3(3,3,1,16)
|
|
$ + r17 * CrHYZ3(3,3,1,17)
|
|
$ - HZ1( -1)*HYZ2(3,3)
|
|
$ + HZ2( -1,-1)*HYZ1(3)
|
|
$ - HZ2(0, -1)*HYZ1(3)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,0,3,1) =
|
|
$ + r01 * CrHYZ4(0,0,3,1,01)
|
|
$ + r02 * CrHYZ4(0,0,3,1,02)
|
|
$ + r03 * CrHYZ4(0,0,3,1,03)
|
|
$ + r04 * CrHYZ4(0,0,3,1,04)
|
|
$ + r05 * CrHYZ4(0,0,3,1,05)
|
|
$ + r06 * CrHYZ4(0,0,3,1,06)
|
|
$ + r07 * CrHYZ4(0,0,3,1,07)
|
|
$ + r08 * CrHYZ4(0,0,3,1,08)
|
|
$ + r09 * CrHYZ4(0,0,3,1,09)
|
|
$ + r10 * CrHYZ4(0,0,3,1,10)
|
|
$ + r11 * CrHYZ4(0,0,3,1,11)
|
|
$ + r12 * CrHYZ4(0,0,3,1,12)
|
|
$ + r13 * CrHYZ4(0,0,3,1,13)
|
|
$ + r14 * CrHYZ4(0,0,3,1,14)
|
|
$ + r15 * CrHYZ4(0,0,3,1,15)
|
|
$ + r16 * CrHYZ4(0,0,3,1,16)
|
|
$ + r17 * CrHYZ4(0,0,3,1,17)
|
|
$ - HZ1( -1)*HYZ3(0,0,3)
|
|
HYZ4(0,1,3,1) =
|
|
$ + r01 * CrHYZ4(0,1,3,1,01)
|
|
$ + r02 * CrHYZ4(0,1,3,1,02)
|
|
$ + r03 * CrHYZ4(0,1,3,1,03)
|
|
$ + r04 * CrHYZ4(0,1,3,1,04)
|
|
$ + r05 * CrHYZ4(0,1,3,1,05)
|
|
$ + r06 * CrHYZ4(0,1,3,1,06)
|
|
$ + r07 * CrHYZ4(0,1,3,1,07)
|
|
$ + r08 * CrHYZ4(0,1,3,1,08)
|
|
$ + r09 * CrHYZ4(0,1,3,1,09)
|
|
$ + r10 * CrHYZ4(0,1,3,1,10)
|
|
$ + r11 * CrHYZ4(0,1,3,1,11)
|
|
$ + r12 * CrHYZ4(0,1,3,1,12)
|
|
$ + r13 * CrHYZ4(0,1,3,1,13)
|
|
$ + r14 * CrHYZ4(0,1,3,1,14)
|
|
$ + r15 * CrHYZ4(0,1,3,1,15)
|
|
$ + r16 * CrHYZ4(0,1,3,1,16)
|
|
$ + r17 * CrHYZ4(0,1,3,1,17)
|
|
$ - HZ1( -1)*HYZ3(0,1,3)
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*HYZ2(0,1)
|
|
HYZ4(0,3,0,1) =
|
|
$ + r01 * CrHYZ4(0,3,0,1,01)
|
|
$ + r02 * CrHYZ4(0,3,0,1,02)
|
|
$ + r03 * CrHYZ4(0,3,0,1,03)
|
|
$ + r04 * CrHYZ4(0,3,0,1,04)
|
|
$ + r05 * CrHYZ4(0,3,0,1,05)
|
|
$ + r06 * CrHYZ4(0,3,0,1,06)
|
|
$ + r07 * CrHYZ4(0,3,0,1,07)
|
|
$ + r08 * CrHYZ4(0,3,0,1,08)
|
|
$ + r09 * CrHYZ4(0,3,0,1,09)
|
|
$ + r10 * CrHYZ4(0,3,0,1,10)
|
|
$ + r11 * CrHYZ4(0,3,0,1,11)
|
|
$ + r12 * CrHYZ4(0,3,0,1,12)
|
|
$ + r13 * CrHYZ4(0,3,0,1,13)
|
|
$ + r14 * CrHYZ4(0,3,0,1,14)
|
|
$ + r15 * CrHYZ4(0,3,0,1,15)
|
|
$ + r16 * CrHYZ4(0,3,0,1,16)
|
|
$ + r17 * CrHYZ4(0,3,0,1,17)
|
|
$ - HZ2(0, -1)*HYZ2(0,3)
|
|
HYZ4(0,3,1,1) =
|
|
$ + r01 * CrHYZ4(0,3,1,1,01)
|
|
$ + r02 * CrHYZ4(0,3,1,1,02)
|
|
$ + r03 * CrHYZ4(0,3,1,1,03)
|
|
$ + r04 * CrHYZ4(0,3,1,1,04)
|
|
$ + r05 * CrHYZ4(0,3,1,1,05)
|
|
$ + r06 * CrHYZ4(0,3,1,1,06)
|
|
$ + r07 * CrHYZ4(0,3,1,1,07)
|
|
$ + r08 * CrHYZ4(0,3,1,1,08)
|
|
$ + r09 * CrHYZ4(0,3,1,1,09)
|
|
$ + r10 * CrHYZ4(0,3,1,1,10)
|
|
$ + r11 * CrHYZ4(0,3,1,1,11)
|
|
$ + r12 * CrHYZ4(0,3,1,1,12)
|
|
$ + r13 * CrHYZ4(0,3,1,1,13)
|
|
$ + r14 * CrHYZ4(0,3,1,1,14)
|
|
$ + r15 * CrHYZ4(0,3,1,1,15)
|
|
$ + r16 * CrHYZ4(0,3,1,1,16)
|
|
$ + r17 * CrHYZ4(0,3,1,1,17)
|
|
$ + HZ2( -1,-1)*HYZ2(0,3)
|
|
HYZ4(0,3,3,1) =
|
|
$ + r01 * CrHYZ4(0,3,3,1,01)
|
|
$ + r02 * CrHYZ4(0,3,3,1,02)
|
|
$ + r03 * CrHYZ4(0,3,3,1,03)
|
|
$ + r04 * CrHYZ4(0,3,3,1,04)
|
|
$ + r05 * CrHYZ4(0,3,3,1,05)
|
|
$ + r06 * CrHYZ4(0,3,3,1,06)
|
|
$ + r07 * CrHYZ4(0,3,3,1,07)
|
|
$ + r08 * CrHYZ4(0,3,3,1,08)
|
|
$ + r09 * CrHYZ4(0,3,3,1,09)
|
|
$ + r10 * CrHYZ4(0,3,3,1,10)
|
|
$ + r11 * CrHYZ4(0,3,3,1,11)
|
|
$ + r12 * CrHYZ4(0,3,3,1,12)
|
|
$ + r13 * CrHYZ4(0,3,3,1,13)
|
|
$ + r14 * CrHYZ4(0,3,3,1,14)
|
|
$ + r15 * CrHYZ4(0,3,3,1,15)
|
|
$ + r16 * CrHYZ4(0,3,3,1,16)
|
|
$ + r17 * CrHYZ4(0,3,3,1,17)
|
|
$ - HZ1( -1)*HYZ3(0,3,3)
|
|
$ + HZ2( -1,-1)*HYZ2(0,3)
|
|
$ - HZ2(0, -1)*HYZ2(0,3)
|
|
HYZ4(3,0,0,1) =
|
|
$ + r01 * CrHYZ4(3,0,0,1,01)
|
|
$ + r02 * CrHYZ4(3,0,0,1,02)
|
|
$ + r03 * CrHYZ4(3,0,0,1,03)
|
|
$ + r04 * CrHYZ4(3,0,0,1,04)
|
|
$ + r05 * CrHYZ4(3,0,0,1,05)
|
|
$ + r06 * CrHYZ4(3,0,0,1,06)
|
|
$ + r07 * CrHYZ4(3,0,0,1,07)
|
|
$ + r08 * CrHYZ4(3,0,0,1,08)
|
|
$ + r09 * CrHYZ4(3,0,0,1,09)
|
|
$ + r10 * CrHYZ4(3,0,0,1,10)
|
|
$ + r11 * CrHYZ4(3,0,0,1,11)
|
|
$ + r12 * CrHYZ4(3,0,0,1,12)
|
|
$ + r13 * CrHYZ4(3,0,0,1,13)
|
|
$ + r14 * CrHYZ4(3,0,0,1,14)
|
|
$ + r15 * CrHYZ4(3,0,0,1,15)
|
|
$ + r16 * CrHYZ4(3,0,0,1,16)
|
|
$ + r17 * CrHYZ4(3,0,0,1,17)
|
|
$ - HZ3(0,0, -1)*HYZ1(3)
|
|
HYZ4(3,0,1,1) =
|
|
$ + r01 * CrHYZ4(3,0,1,1,01)
|
|
$ + r02 * CrHYZ4(3,0,1,1,02)
|
|
$ + r03 * CrHYZ4(3,0,1,1,03)
|
|
$ + r04 * CrHYZ4(3,0,1,1,04)
|
|
$ + r05 * CrHYZ4(3,0,1,1,05)
|
|
$ + r06 * CrHYZ4(3,0,1,1,06)
|
|
$ + r07 * CrHYZ4(3,0,1,1,07)
|
|
$ + r08 * CrHYZ4(3,0,1,1,08)
|
|
$ + r09 * CrHYZ4(3,0,1,1,09)
|
|
$ + r10 * CrHYZ4(3,0,1,1,10)
|
|
$ + r11 * CrHYZ4(3,0,1,1,11)
|
|
$ + r12 * CrHYZ4(3,0,1,1,12)
|
|
$ + r13 * CrHYZ4(3,0,1,1,13)
|
|
$ + r14 * CrHYZ4(3,0,1,1,14)
|
|
$ + r15 * CrHYZ4(3,0,1,1,15)
|
|
$ + r16 * CrHYZ4(3,0,1,1,16)
|
|
$ + r17 * CrHYZ4(3,0,1,1,17)
|
|
$ + r18 * CrHYZ4(3,0,1,1,18)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
HYZ4(3,0,3,1) =
|
|
$ + r01 * CrHYZ4(3,0,3,1,01)
|
|
$ + r02 * CrHYZ4(3,0,3,1,02)
|
|
$ + r03 * CrHYZ4(3,0,3,1,03)
|
|
$ + r04 * CrHYZ4(3,0,3,1,04)
|
|
$ + r05 * CrHYZ4(3,0,3,1,05)
|
|
$ + r06 * CrHYZ4(3,0,3,1,06)
|
|
$ + r07 * CrHYZ4(3,0,3,1,07)
|
|
$ + r08 * CrHYZ4(3,0,3,1,08)
|
|
$ + r09 * CrHYZ4(3,0,3,1,09)
|
|
$ + r10 * CrHYZ4(3,0,3,1,10)
|
|
$ + r11 * CrHYZ4(3,0,3,1,11)
|
|
$ + r12 * CrHYZ4(3,0,3,1,12)
|
|
$ + r13 * CrHYZ4(3,0,3,1,13)
|
|
$ + r14 * CrHYZ4(3,0,3,1,14)
|
|
$ + r15 * CrHYZ4(3,0,3,1,15)
|
|
$ + r16 * CrHYZ4(3,0,3,1,16)
|
|
$ + r17 * CrHYZ4(3,0,3,1,17)
|
|
$ - HZ1( -1)*HYZ3(3,0,3)
|
|
$ + HZ3( -1,0,-1)*HYZ1(3)
|
|
$ - HZ3(0,0, -1)*HYZ1(3)
|
|
HYZ4(3,1,1,1) =
|
|
$ + r01 * CrHYZ4(3,1,1,1,01)
|
|
$ + r02 * CrHYZ4(3,1,1,1,02)
|
|
$ + r03 * CrHYZ4(3,1,1,1,03)
|
|
$ + r04 * CrHYZ4(3,1,1,1,04)
|
|
$ + r05 * CrHYZ4(3,1,1,1,05)
|
|
$ + r06 * CrHYZ4(3,1,1,1,06)
|
|
$ + r07 * CrHYZ4(3,1,1,1,07)
|
|
$ + r08 * CrHYZ4(3,1,1,1,08)
|
|
$ + r09 * CrHYZ4(3,1,1,1,09)
|
|
$ + r10 * CrHYZ4(3,1,1,1,10)
|
|
$ + r11 * CrHYZ4(3,1,1,1,11)
|
|
$ + r12 * CrHYZ4(3,1,1,1,12)
|
|
$ + r13 * CrHYZ4(3,1,1,1,13)
|
|
$ + r14 * CrHYZ4(3,1,1,1,14)
|
|
$ + r15 * CrHYZ4(3,1,1,1,15)
|
|
$ + r16 * CrHYZ4(3,1,1,1,16)
|
|
$ + r17 * CrHYZ4(3,1,1,1,17)
|
|
$ - HZ3( -1,-1,-1)*HYZ1(3)
|
|
HYZ4(3,3,0,1) =
|
|
$ + r01 * CrHYZ4(3,3,0,1,01)
|
|
$ + r02 * CrHYZ4(3,3,0,1,02)
|
|
$ + r03 * CrHYZ4(3,3,0,1,03)
|
|
$ + r04 * CrHYZ4(3,3,0,1,04)
|
|
$ + r05 * CrHYZ4(3,3,0,1,05)
|
|
$ + r06 * CrHYZ4(3,3,0,1,06)
|
|
$ + r07 * CrHYZ4(3,3,0,1,07)
|
|
$ + r08 * CrHYZ4(3,3,0,1,08)
|
|
$ + r09 * CrHYZ4(3,3,0,1,09)
|
|
$ + r10 * CrHYZ4(3,3,0,1,10)
|
|
$ + r11 * CrHYZ4(3,3,0,1,11)
|
|
$ + r12 * CrHYZ4(3,3,0,1,12)
|
|
$ + r13 * CrHYZ4(3,3,0,1,13)
|
|
$ + r14 * CrHYZ4(3,3,0,1,14)
|
|
$ + r15 * CrHYZ4(3,3,0,1,15)
|
|
$ + r16 * CrHYZ4(3,3,0,1,16)
|
|
$ + r17 * CrHYZ4(3,3,0,1,17)
|
|
$ - HZ2(0, -1)*HYZ2(3,3)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
$ - HZ3(0,0, -1)*HYZ1(3)
|
|
HYZ4(3,3,1,1) =
|
|
$ + r01 * CrHYZ4(3,3,1,1,01)
|
|
$ + r02 * CrHYZ4(3,3,1,1,02)
|
|
$ + r03 * CrHYZ4(3,3,1,1,03)
|
|
$ + r04 * CrHYZ4(3,3,1,1,04)
|
|
$ + r05 * CrHYZ4(3,3,1,1,05)
|
|
$ + r06 * CrHYZ4(3,3,1,1,06)
|
|
$ + r07 * CrHYZ4(3,3,1,1,07)
|
|
$ + r08 * CrHYZ4(3,3,1,1,08)
|
|
$ + r09 * CrHYZ4(3,3,1,1,09)
|
|
$ + r10 * CrHYZ4(3,3,1,1,10)
|
|
$ + r11 * CrHYZ4(3,3,1,1,11)
|
|
$ + r12 * CrHYZ4(3,3,1,1,12)
|
|
$ + r13 * CrHYZ4(3,3,1,1,13)
|
|
$ + r14 * CrHYZ4(3,3,1,1,14)
|
|
$ + r15 * CrHYZ4(3,3,1,1,15)
|
|
$ + r16 * CrHYZ4(3,3,1,1,16)
|
|
$ + r17 * CrHYZ4(3,3,1,1,17)
|
|
$ + HZ2( -1,-1)*HYZ2(3,3)
|
|
$ - 2.000000000000000d+00*HZ3(-1,-1,-1)*HYZ1(3)
|
|
$ + HZ3( -1,0,-1)*HYZ1(3)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
HYZ4(3,3,3,1) =
|
|
$ + r01 * CrHYZ4(3,3,3,1,01)
|
|
$ + r02 * CrHYZ4(3,3,3,1,02)
|
|
$ + r03 * CrHYZ4(3,3,3,1,03)
|
|
$ + r04 * CrHYZ4(3,3,3,1,04)
|
|
$ + r05 * CrHYZ4(3,3,3,1,05)
|
|
$ + r06 * CrHYZ4(3,3,3,1,06)
|
|
$ + r07 * CrHYZ4(3,3,3,1,07)
|
|
$ + r08 * CrHYZ4(3,3,3,1,08)
|
|
$ + r09 * CrHYZ4(3,3,3,1,09)
|
|
$ + r10 * CrHYZ4(3,3,3,1,10)
|
|
$ + r11 * CrHYZ4(3,3,3,1,11)
|
|
$ + r12 * CrHYZ4(3,3,3,1,12)
|
|
$ + r13 * CrHYZ4(3,3,3,1,13)
|
|
$ + r14 * CrHYZ4(3,3,3,1,14)
|
|
$ + r15 * CrHYZ4(3,3,3,1,15)
|
|
$ + r16 * CrHYZ4(3,3,3,1,16)
|
|
$ + r17 * CrHYZ4(3,3,3,1,17)
|
|
$ - HZ1( -1)*HYZ3(3,3,3)
|
|
$ + HZ2( -1,-1)*HYZ2(3,3)
|
|
$ - HZ2(0, -1)*HYZ2(3,3)
|
|
$ - HZ3( -1,-1,-1)*HYZ1(3)
|
|
$ + HZ3( -1,0,-1)*HYZ1(3)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
$ - HZ3(0,0, -1)*HYZ1(3)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl320(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl320(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (3,2,0) *****
|
|
***** up to weight n using the EXPANDED expressions for the *****
|
|
***** z-dependent expansion coefficients *****
|
|
***** applicable for z<0.5 *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: CsHYZ2,CsHYZ3,CsHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
dimension CsHYZ2(0:3,0:3,22),CsHYZ3(0:3,0:3,0:3,22),
|
|
$ CsHYZ4(0:3,0:3,0:3,0:3,22)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_s/
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
save CsHYZ2,CsHYZ3,CsHYZ4
|
|
!$omp threadprivate(CsHYZ2,CsHYZ3,CsHYZ4,/com_tdhpl_s/,/com_tdhpl_HPL2/)
|
|
|
|
if (iflag.eq.1) then
|
|
call fillcoeff2dhpl320(iflag,n,CsHYZ2,CsHYZ3,CsHYZ4)
|
|
endif
|
|
|
|
* 2001-04-20:10:54:20.hpl
|
|
* <- HPLexpand.320t
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
if (n.eq.2) then
|
|
HYZ2(3,2) =
|
|
$ + s01 * CsHYZ2(3,2,01)
|
|
$ + s02 * CsHYZ2(3,2,02)
|
|
$ + s03 * CsHYZ2(3,2,03)
|
|
$ + s04 * CsHYZ2(3,2,04)
|
|
$ + s05 * CsHYZ2(3,2,05)
|
|
$ + s06 * CsHYZ2(3,2,06)
|
|
$ + s07 * CsHYZ2(3,2,07)
|
|
$ + s08 * CsHYZ2(3,2,08)
|
|
$ + s09 * CsHYZ2(3,2,09)
|
|
$ + s10 * CsHYZ2(3,2,10)
|
|
$ + s11 * CsHYZ2(3,2,11)
|
|
$ + s12 * CsHYZ2(3,2,12)
|
|
$ + s13 * CsHYZ2(3,2,13)
|
|
$ + s14 * CsHYZ2(3,2,14)
|
|
$ + s15 * CsHYZ2(3,2,15)
|
|
$ + s16 * CsHYZ2(3,2,16)
|
|
$ + s17 * CsHYZ2(3,2,17)
|
|
$ - HZ1(1) *HYZ1(3)
|
|
endif
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(0,3,2) =
|
|
$ + s01 * CsHYZ3(0,3,2,01)
|
|
$ + s02 * CsHYZ3(0,3,2,02)
|
|
$ + s03 * CsHYZ3(0,3,2,03)
|
|
$ + s04 * CsHYZ3(0,3,2,04)
|
|
$ + s05 * CsHYZ3(0,3,2,05)
|
|
$ + s06 * CsHYZ3(0,3,2,06)
|
|
$ + s07 * CsHYZ3(0,3,2,07)
|
|
$ + s08 * CsHYZ3(0,3,2,08)
|
|
$ + s09 * CsHYZ3(0,3,2,09)
|
|
$ + s10 * CsHYZ3(0,3,2,10)
|
|
$ + s11 * CsHYZ3(0,3,2,11)
|
|
$ + s12 * CsHYZ3(0,3,2,12)
|
|
$ + s13 * CsHYZ3(0,3,2,13)
|
|
$ + s14 * CsHYZ3(0,3,2,14)
|
|
$ + s15 * CsHYZ3(0,3,2,15)
|
|
$ + s16 * CsHYZ3(0,3,2,16)
|
|
$ + s17 * CsHYZ3(0,3,2,17)
|
|
$ - HZ1(1) *HYZ2(0,3)
|
|
HYZ3(3,0,2) =
|
|
$ + s01 * CsHYZ3(3,0,2,01)
|
|
$ + s02 * CsHYZ3(3,0,2,02)
|
|
$ + s03 * CsHYZ3(3,0,2,03)
|
|
$ + s04 * CsHYZ3(3,0,2,04)
|
|
$ + s05 * CsHYZ3(3,0,2,05)
|
|
$ + s06 * CsHYZ3(3,0,2,06)
|
|
$ + s07 * CsHYZ3(3,0,2,07)
|
|
$ + s08 * CsHYZ3(3,0,2,08)
|
|
$ + s09 * CsHYZ3(3,0,2,09)
|
|
$ + s10 * CsHYZ3(3,0,2,10)
|
|
$ + s11 * CsHYZ3(3,0,2,11)
|
|
$ + s12 * CsHYZ3(3,0,2,12)
|
|
$ + s13 * CsHYZ3(3,0,2,13)
|
|
$ + s14 * CsHYZ3(3,0,2,14)
|
|
$ + s15 * CsHYZ3(3,0,2,15)
|
|
$ + s16 * CsHYZ3(3,0,2,16)
|
|
$ + s17 * CsHYZ3(3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ1(3)
|
|
$ - HZ2(1,1) *HYZ1(3)
|
|
HYZ3(3,2,2) =
|
|
$ + s01 * CsHYZ3(3,2,2,01)
|
|
$ + s02 * CsHYZ3(3,2,2,02)
|
|
$ + s03 * CsHYZ3(3,2,2,03)
|
|
$ + s04 * CsHYZ3(3,2,2,04)
|
|
$ + s05 * CsHYZ3(3,2,2,05)
|
|
$ + s06 * CsHYZ3(3,2,2,06)
|
|
$ + s07 * CsHYZ3(3,2,2,07)
|
|
$ + s08 * CsHYZ3(3,2,2,08)
|
|
$ + s09 * CsHYZ3(3,2,2,09)
|
|
$ + s10 * CsHYZ3(3,2,2,10)
|
|
$ + s11 * CsHYZ3(3,2,2,11)
|
|
$ + s12 * CsHYZ3(3,2,2,12)
|
|
$ + s13 * CsHYZ3(3,2,2,13)
|
|
$ + s14 * CsHYZ3(3,2,2,14)
|
|
$ + s15 * CsHYZ3(3,2,2,15)
|
|
$ + s16 * CsHYZ3(3,2,2,16)
|
|
$ + s17 * CsHYZ3(3,2,2,17)
|
|
$ + HZ2(1,1) *HYZ1(3)
|
|
HYZ3(3,3,2) =
|
|
$ + s01 * CsHYZ3(3,3,2,01)
|
|
$ + s02 * CsHYZ3(3,3,2,02)
|
|
$ + s03 * CsHYZ3(3,3,2,03)
|
|
$ + s04 * CsHYZ3(3,3,2,04)
|
|
$ + s05 * CsHYZ3(3,3,2,05)
|
|
$ + s06 * CsHYZ3(3,3,2,06)
|
|
$ + s07 * CsHYZ3(3,3,2,07)
|
|
$ + s08 * CsHYZ3(3,3,2,08)
|
|
$ + s09 * CsHYZ3(3,3,2,09)
|
|
$ + s10 * CsHYZ3(3,3,2,10)
|
|
$ + s11 * CsHYZ3(3,3,2,11)
|
|
$ + s12 * CsHYZ3(3,3,2,12)
|
|
$ + s13 * CsHYZ3(3,3,2,13)
|
|
$ + s14 * CsHYZ3(3,3,2,14)
|
|
$ + s15 * CsHYZ3(3,3,2,15)
|
|
$ + s16 * CsHYZ3(3,3,2,16)
|
|
$ + s17 * CsHYZ3(3,3,2,17)
|
|
$ - HZ1(1) *HYZ2(3,3)
|
|
$ - HZ2(0,1) *HYZ1(3)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,0,3,2) =
|
|
$ + s01 * CsHYZ4(0,0,3,2,01)
|
|
$ + s02 * CsHYZ4(0,0,3,2,02)
|
|
$ + s03 * CsHYZ4(0,0,3,2,03)
|
|
$ + s04 * CsHYZ4(0,0,3,2,04)
|
|
$ + s05 * CsHYZ4(0,0,3,2,05)
|
|
$ + s06 * CsHYZ4(0,0,3,2,06)
|
|
$ + s07 * CsHYZ4(0,0,3,2,07)
|
|
$ + s08 * CsHYZ4(0,0,3,2,08)
|
|
$ + s09 * CsHYZ4(0,0,3,2,09)
|
|
$ + s10 * CsHYZ4(0,0,3,2,10)
|
|
$ + s11 * CsHYZ4(0,0,3,2,11)
|
|
$ + s12 * CsHYZ4(0,0,3,2,12)
|
|
$ + s13 * CsHYZ4(0,0,3,2,13)
|
|
$ + s14 * CsHYZ4(0,0,3,2,14)
|
|
$ + s15 * CsHYZ4(0,0,3,2,15)
|
|
$ + s16 * CsHYZ4(0,0,3,2,16)
|
|
$ + s17 * CsHYZ4(0,0,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,0,3)
|
|
HYZ4(0,2,3,2) =
|
|
$ + s02 * CsHYZ4(0,2,3,2,02)
|
|
$ + s03 * CsHYZ4(0,2,3,2,03)
|
|
$ + s04 * CsHYZ4(0,2,3,2,04)
|
|
$ + s05 * CsHYZ4(0,2,3,2,05)
|
|
$ + s06 * CsHYZ4(0,2,3,2,06)
|
|
$ + s07 * CsHYZ4(0,2,3,2,07)
|
|
$ + s08 * CsHYZ4(0,2,3,2,08)
|
|
$ + s09 * CsHYZ4(0,2,3,2,09)
|
|
$ + s10 * CsHYZ4(0,2,3,2,10)
|
|
$ + s11 * CsHYZ4(0,2,3,2,11)
|
|
$ + s12 * CsHYZ4(0,2,3,2,12)
|
|
$ + s13 * CsHYZ4(0,2,3,2,13)
|
|
$ + s14 * CsHYZ4(0,2,3,2,14)
|
|
$ + s15 * CsHYZ4(0,2,3,2,15)
|
|
$ + s16 * CsHYZ4(0,2,3,2,16)
|
|
$ + s17 * CsHYZ4(0,2,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,2,3)
|
|
HYZ4(0,3,0,2) =
|
|
$ + s01 * CsHYZ4(0,3,0,2,01)
|
|
$ + s02 * CsHYZ4(0,3,0,2,02)
|
|
$ + s03 * CsHYZ4(0,3,0,2,03)
|
|
$ + s04 * CsHYZ4(0,3,0,2,04)
|
|
$ + s05 * CsHYZ4(0,3,0,2,05)
|
|
$ + s06 * CsHYZ4(0,3,0,2,06)
|
|
$ + s07 * CsHYZ4(0,3,0,2,07)
|
|
$ + s08 * CsHYZ4(0,3,0,2,08)
|
|
$ + s09 * CsHYZ4(0,3,0,2,09)
|
|
$ + s10 * CsHYZ4(0,3,0,2,10)
|
|
$ + s11 * CsHYZ4(0,3,0,2,11)
|
|
$ + s12 * CsHYZ4(0,3,0,2,12)
|
|
$ + s13 * CsHYZ4(0,3,0,2,13)
|
|
$ + s14 * CsHYZ4(0,3,0,2,14)
|
|
$ + s15 * CsHYZ4(0,3,0,2,15)
|
|
$ + s16 * CsHYZ4(0,3,0,2,16)
|
|
$ + s17 * CsHYZ4(0,3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ2(0,3)
|
|
$ - HZ2(1,1) *HYZ2(0,3)
|
|
HYZ4(0,3,2,2) =
|
|
$ + s01 * CsHYZ4(0,3,2,2,01)
|
|
$ + s02 * CsHYZ4(0,3,2,2,02)
|
|
$ + s03 * CsHYZ4(0,3,2,2,03)
|
|
$ + s04 * CsHYZ4(0,3,2,2,04)
|
|
$ + s05 * CsHYZ4(0,3,2,2,05)
|
|
$ + s06 * CsHYZ4(0,3,2,2,06)
|
|
$ + s07 * CsHYZ4(0,3,2,2,07)
|
|
$ + s08 * CsHYZ4(0,3,2,2,08)
|
|
$ + s09 * CsHYZ4(0,3,2,2,09)
|
|
$ + s10 * CsHYZ4(0,3,2,2,10)
|
|
$ + s11 * CsHYZ4(0,3,2,2,11)
|
|
$ + s12 * CsHYZ4(0,3,2,2,12)
|
|
$ + s13 * CsHYZ4(0,3,2,2,13)
|
|
$ + s14 * CsHYZ4(0,3,2,2,14)
|
|
$ + s15 * CsHYZ4(0,3,2,2,15)
|
|
$ + s16 * CsHYZ4(0,3,2,2,16)
|
|
$ + s17 * CsHYZ4(0,3,2,2,17)
|
|
$ + HZ2(1,1) *HYZ2(0,3)
|
|
HYZ4(0,3,3,2) =
|
|
$ + s01 * CsHYZ4(0,3,3,2,01)
|
|
$ + s02 * CsHYZ4(0,3,3,2,02)
|
|
$ + s03 * CsHYZ4(0,3,3,2,03)
|
|
$ + s04 * CsHYZ4(0,3,3,2,04)
|
|
$ + s05 * CsHYZ4(0,3,3,2,05)
|
|
$ + s06 * CsHYZ4(0,3,3,2,06)
|
|
$ + s07 * CsHYZ4(0,3,3,2,07)
|
|
$ + s08 * CsHYZ4(0,3,3,2,08)
|
|
$ + s09 * CsHYZ4(0,3,3,2,09)
|
|
$ + s10 * CsHYZ4(0,3,3,2,10)
|
|
$ + s11 * CsHYZ4(0,3,3,2,11)
|
|
$ + s12 * CsHYZ4(0,3,3,2,12)
|
|
$ + s13 * CsHYZ4(0,3,3,2,13)
|
|
$ + s14 * CsHYZ4(0,3,3,2,14)
|
|
$ + s15 * CsHYZ4(0,3,3,2,15)
|
|
$ + s16 * CsHYZ4(0,3,3,2,16)
|
|
$ + s17 * CsHYZ4(0,3,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,3,3)
|
|
$ - HZ2(0,1) *HYZ2(0,3)
|
|
HYZ4(3,0,0,2) =
|
|
$ + s01 * CsHYZ4(3,0,0,2,01)
|
|
$ + s02 * CsHYZ4(3,0,0,2,02)
|
|
$ + s03 * CsHYZ4(3,0,0,2,03)
|
|
$ + s04 * CsHYZ4(3,0,0,2,04)
|
|
$ + s05 * CsHYZ4(3,0,0,2,05)
|
|
$ + s06 * CsHYZ4(3,0,0,2,06)
|
|
$ + s07 * CsHYZ4(3,0,0,2,07)
|
|
$ + s08 * CsHYZ4(3,0,0,2,08)
|
|
$ + s09 * CsHYZ4(3,0,0,2,09)
|
|
$ + s10 * CsHYZ4(3,0,0,2,10)
|
|
$ + s11 * CsHYZ4(3,0,0,2,11)
|
|
$ + s12 * CsHYZ4(3,0,0,2,12)
|
|
$ + s13 * CsHYZ4(3,0,0,2,13)
|
|
$ + s14 * CsHYZ4(3,0,0,2,14)
|
|
$ + s15 * CsHYZ4(3,0,0,2,15)
|
|
$ + s16 * CsHYZ4(3,0,0,2,16)
|
|
$ + s17 * CsHYZ4(3,0,0,2,17)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(0,1,1) *HYZ1(3)
|
|
$ - HZ3(1,0,1) *HYZ1(3)
|
|
$ - HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,0,2,2) =
|
|
$ + s01 * CsHYZ4(3,0,2,2,01)
|
|
$ + s02 * CsHYZ4(3,0,2,2,02)
|
|
$ + s03 * CsHYZ4(3,0,2,2,03)
|
|
$ + s04 * CsHYZ4(3,0,2,2,04)
|
|
$ + s05 * CsHYZ4(3,0,2,2,05)
|
|
$ + s06 * CsHYZ4(3,0,2,2,06)
|
|
$ + s07 * CsHYZ4(3,0,2,2,07)
|
|
$ + s08 * CsHYZ4(3,0,2,2,08)
|
|
$ + s09 * CsHYZ4(3,0,2,2,09)
|
|
$ + s10 * CsHYZ4(3,0,2,2,10)
|
|
$ + s11 * CsHYZ4(3,0,2,2,11)
|
|
$ + s12 * CsHYZ4(3,0,2,2,12)
|
|
$ + s13 * CsHYZ4(3,0,2,2,13)
|
|
$ + s14 * CsHYZ4(3,0,2,2,14)
|
|
$ + s15 * CsHYZ4(3,0,2,2,15)
|
|
$ + s16 * CsHYZ4(3,0,2,2,16)
|
|
$ + s17 * CsHYZ4(3,0,2,2,17)
|
|
$ + s18 * CsHYZ4(3,0,2,2,18)
|
|
$ + HZ3(0,1,1) *HYZ1(3)
|
|
$ + HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,0,3,2) =
|
|
$ + s01 * CsHYZ4(3,0,3,2,01)
|
|
$ + s02 * CsHYZ4(3,0,3,2,02)
|
|
$ + s03 * CsHYZ4(3,0,3,2,03)
|
|
$ + s04 * CsHYZ4(3,0,3,2,04)
|
|
$ + s05 * CsHYZ4(3,0,3,2,05)
|
|
$ + s06 * CsHYZ4(3,0,3,2,06)
|
|
$ + s07 * CsHYZ4(3,0,3,2,07)
|
|
$ + s08 * CsHYZ4(3,0,3,2,08)
|
|
$ + s09 * CsHYZ4(3,0,3,2,09)
|
|
$ + s10 * CsHYZ4(3,0,3,2,10)
|
|
$ + s11 * CsHYZ4(3,0,3,2,11)
|
|
$ + s12 * CsHYZ4(3,0,3,2,12)
|
|
$ + s13 * CsHYZ4(3,0,3,2,13)
|
|
$ + s14 * CsHYZ4(3,0,3,2,14)
|
|
$ + s15 * CsHYZ4(3,0,3,2,15)
|
|
$ + s16 * CsHYZ4(3,0,3,2,16)
|
|
$ + s17 * CsHYZ4(3,0,3,2,17)
|
|
$ - HZ1(1) *HYZ3(3,0,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(0,1,1) *HYZ1(3)
|
|
HYZ4(3,2,2,2) =
|
|
$ + s01 * CsHYZ4(3,2,2,2,01)
|
|
$ + s02 * CsHYZ4(3,2,2,2,02)
|
|
$ + s03 * CsHYZ4(3,2,2,2,03)
|
|
$ + s04 * CsHYZ4(3,2,2,2,04)
|
|
$ + s05 * CsHYZ4(3,2,2,2,05)
|
|
$ + s06 * CsHYZ4(3,2,2,2,06)
|
|
$ + s07 * CsHYZ4(3,2,2,2,07)
|
|
$ + s08 * CsHYZ4(3,2,2,2,08)
|
|
$ + s09 * CsHYZ4(3,2,2,2,09)
|
|
$ + s10 * CsHYZ4(3,2,2,2,10)
|
|
$ + s11 * CsHYZ4(3,2,2,2,11)
|
|
$ + s12 * CsHYZ4(3,2,2,2,12)
|
|
$ + s13 * CsHYZ4(3,2,2,2,13)
|
|
$ + s14 * CsHYZ4(3,2,2,2,14)
|
|
$ + s15 * CsHYZ4(3,2,2,2,15)
|
|
$ + s16 * CsHYZ4(3,2,2,2,16)
|
|
$ + s17 * CsHYZ4(3,2,2,2,17)
|
|
$ - HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,3,0,2) =
|
|
$ + s01 * CsHYZ4(3,3,0,2,01)
|
|
$ + s02 * CsHYZ4(3,3,0,2,02)
|
|
$ + s03 * CsHYZ4(3,3,0,2,03)
|
|
$ + s04 * CsHYZ4(3,3,0,2,04)
|
|
$ + s05 * CsHYZ4(3,3,0,2,05)
|
|
$ + s06 * CsHYZ4(3,3,0,2,06)
|
|
$ + s07 * CsHYZ4(3,3,0,2,07)
|
|
$ + s08 * CsHYZ4(3,3,0,2,08)
|
|
$ + s09 * CsHYZ4(3,3,0,2,09)
|
|
$ + s10 * CsHYZ4(3,3,0,2,10)
|
|
$ + s11 * CsHYZ4(3,3,0,2,11)
|
|
$ + s12 * CsHYZ4(3,3,0,2,12)
|
|
$ + s13 * CsHYZ4(3,3,0,2,13)
|
|
$ + s14 * CsHYZ4(3,3,0,2,14)
|
|
$ + s15 * CsHYZ4(3,3,0,2,15)
|
|
$ + s16 * CsHYZ4(3,3,0,2,16)
|
|
$ + s17 * CsHYZ4(3,3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ2(3,3)
|
|
$ - HZ2(1,1) *HYZ2(3,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,3,2,2) =
|
|
$ + s01 * CsHYZ4(3,3,2,2,01)
|
|
$ + s02 * CsHYZ4(3,3,2,2,02)
|
|
$ + s03 * CsHYZ4(3,3,2,2,03)
|
|
$ + s04 * CsHYZ4(3,3,2,2,04)
|
|
$ + s05 * CsHYZ4(3,3,2,2,05)
|
|
$ + s06 * CsHYZ4(3,3,2,2,06)
|
|
$ + s07 * CsHYZ4(3,3,2,2,07)
|
|
$ + s08 * CsHYZ4(3,3,2,2,08)
|
|
$ + s09 * CsHYZ4(3,3,2,2,09)
|
|
$ + s10 * CsHYZ4(3,3,2,2,10)
|
|
$ + s11 * CsHYZ4(3,3,2,2,11)
|
|
$ + s12 * CsHYZ4(3,3,2,2,12)
|
|
$ + s13 * CsHYZ4(3,3,2,2,13)
|
|
$ + s14 * CsHYZ4(3,3,2,2,14)
|
|
$ + s15 * CsHYZ4(3,3,2,2,15)
|
|
$ + s16 * CsHYZ4(3,3,2,2,16)
|
|
$ + s17 * CsHYZ4(3,3,2,2,17)
|
|
$ + HZ2(1,1) *HYZ2(3,3)
|
|
$ + HZ3(0,1,1) *HYZ1(3)
|
|
$ + HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,3,3,2) =
|
|
$ + s01 * CsHYZ4(3,3,3,2,01)
|
|
$ + s02 * CsHYZ4(3,3,3,2,02)
|
|
$ + s03 * CsHYZ4(3,3,3,2,03)
|
|
$ + s04 * CsHYZ4(3,3,3,2,04)
|
|
$ + s05 * CsHYZ4(3,3,3,2,05)
|
|
$ + s06 * CsHYZ4(3,3,3,2,06)
|
|
$ + s07 * CsHYZ4(3,3,3,2,07)
|
|
$ + s08 * CsHYZ4(3,3,3,2,08)
|
|
$ + s09 * CsHYZ4(3,3,3,2,09)
|
|
$ + s10 * CsHYZ4(3,3,3,2,10)
|
|
$ + s11 * CsHYZ4(3,3,3,2,11)
|
|
$ + s12 * CsHYZ4(3,3,3,2,12)
|
|
$ + s13 * CsHYZ4(3,3,3,2,13)
|
|
$ + s14 * CsHYZ4(3,3,3,2,14)
|
|
$ + s15 * CsHYZ4(3,3,3,2,15)
|
|
$ + s16 * CsHYZ4(3,3,3,2,16)
|
|
$ + s17 * CsHYZ4(3,3,3,2,17)
|
|
$ - HZ1(1) *HYZ3(3,3,3)
|
|
$ - HZ2(0,1) *HYZ2(3,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillirr2dhpl320e(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl320e(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (3,2,0) *****
|
|
***** up to weight n using the EXACT expressions for the *****
|
|
***** z-dependent expansion coefficients *****
|
|
***** applicable for z>0.5 *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
dimension CbHYZ1(3:3,22),CbHYZ2(0:3,0:3,22),
|
|
$ CbHYZ3(0:3,0:3,0:3,22),CbHYZ4(0:3,0:3,0:3,0:3,22)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_b/
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
common /com_tdhpl_aux/CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4
|
|
!$omp threadprivate(/com_tdhpl_HPL2/,/com_tdhpl_b/,/com_tdhpl_aux/)
|
|
|
|
if (iflag.eq.1) then
|
|
call fillcoeff2dhplaux(iflag,n,CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4)
|
|
call fillcoeff2dhpl320e(iflag,n,CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4)
|
|
endif
|
|
* 2001-04-20:13:08:47.hpl
|
|
* <- HPLexpand.320e
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
if (n.eq.2) then
|
|
HYZ2(3,2) =
|
|
$ + b01 * CbHYZ2(3,2,01)
|
|
$ + b02 * CbHYZ2(3,2,02)
|
|
$ + b03 * CbHYZ2(3,2,03)
|
|
$ + b04 * CbHYZ2(3,2,04)
|
|
$ + b05 * CbHYZ2(3,2,05)
|
|
$ + b06 * CbHYZ2(3,2,06)
|
|
$ + b07 * CbHYZ2(3,2,07)
|
|
$ + b08 * CbHYZ2(3,2,08)
|
|
$ + b09 * CbHYZ2(3,2,09)
|
|
$ + b10 * CbHYZ2(3,2,10)
|
|
$ + b11 * CbHYZ2(3,2,11)
|
|
$ + b12 * CbHYZ2(3,2,12)
|
|
$ + b13 * CbHYZ2(3,2,13)
|
|
$ + b14 * CbHYZ2(3,2,14)
|
|
$ + b15 * CbHYZ2(3,2,15)
|
|
$ + b16 * CbHYZ2(3,2,16)
|
|
$ + b17 * CbHYZ2(3,2,17)
|
|
$ - HZ1(1) *HYZ1(3)
|
|
endif
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(0,3,2) =
|
|
$ + b01 * CbHYZ3(0,3,2,01)
|
|
$ + b02 * CbHYZ3(0,3,2,02)
|
|
$ + b03 * CbHYZ3(0,3,2,03)
|
|
$ + b04 * CbHYZ3(0,3,2,04)
|
|
$ + b05 * CbHYZ3(0,3,2,05)
|
|
$ + b06 * CbHYZ3(0,3,2,06)
|
|
$ + b07 * CbHYZ3(0,3,2,07)
|
|
$ + b08 * CbHYZ3(0,3,2,08)
|
|
$ + b09 * CbHYZ3(0,3,2,09)
|
|
$ + b10 * CbHYZ3(0,3,2,10)
|
|
$ + b11 * CbHYZ3(0,3,2,11)
|
|
$ + b12 * CbHYZ3(0,3,2,12)
|
|
$ + b13 * CbHYZ3(0,3,2,13)
|
|
$ + b14 * CbHYZ3(0,3,2,14)
|
|
$ + b15 * CbHYZ3(0,3,2,15)
|
|
$ + b16 * CbHYZ3(0,3,2,16)
|
|
$ + b17 * CbHYZ3(0,3,2,17)
|
|
$ - HZ1(1) *HYZ2(0,3)
|
|
HYZ3(3,0,2) =
|
|
$ + b01 * CbHYZ3(3,0,2,01)
|
|
$ + b02 * CbHYZ3(3,0,2,02)
|
|
$ + b03 * CbHYZ3(3,0,2,03)
|
|
$ + b04 * CbHYZ3(3,0,2,04)
|
|
$ + b05 * CbHYZ3(3,0,2,05)
|
|
$ + b06 * CbHYZ3(3,0,2,06)
|
|
$ + b07 * CbHYZ3(3,0,2,07)
|
|
$ + b08 * CbHYZ3(3,0,2,08)
|
|
$ + b09 * CbHYZ3(3,0,2,09)
|
|
$ + b10 * CbHYZ3(3,0,2,10)
|
|
$ + b11 * CbHYZ3(3,0,2,11)
|
|
$ + b12 * CbHYZ3(3,0,2,12)
|
|
$ + b13 * CbHYZ3(3,0,2,13)
|
|
$ + b14 * CbHYZ3(3,0,2,14)
|
|
$ + b15 * CbHYZ3(3,0,2,15)
|
|
$ + b16 * CbHYZ3(3,0,2,16)
|
|
$ + b17 * CbHYZ3(3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ1(3)
|
|
$ - HZ2(1,1) *HYZ1(3)
|
|
HYZ3(3,2,2) =
|
|
$ + b01 * CbHYZ3(3,2,2,01)
|
|
$ + b02 * CbHYZ3(3,2,2,02)
|
|
$ + b03 * CbHYZ3(3,2,2,03)
|
|
$ + b04 * CbHYZ3(3,2,2,04)
|
|
$ + b05 * CbHYZ3(3,2,2,05)
|
|
$ + b06 * CbHYZ3(3,2,2,06)
|
|
$ + b07 * CbHYZ3(3,2,2,07)
|
|
$ + b08 * CbHYZ3(3,2,2,08)
|
|
$ + b09 * CbHYZ3(3,2,2,09)
|
|
$ + b10 * CbHYZ3(3,2,2,10)
|
|
$ + b11 * CbHYZ3(3,2,2,11)
|
|
$ + b12 * CbHYZ3(3,2,2,12)
|
|
$ + b13 * CbHYZ3(3,2,2,13)
|
|
$ + b14 * CbHYZ3(3,2,2,14)
|
|
$ + b15 * CbHYZ3(3,2,2,15)
|
|
$ + b16 * CbHYZ3(3,2,2,16)
|
|
$ + b17 * CbHYZ3(3,2,2,17)
|
|
$ + b18 * CbHYZ3(3,2,2,18)
|
|
$ + HZ2(1,1) *HYZ1(3)
|
|
HYZ3(3,3,2) =
|
|
$ + b01 * CbHYZ3(3,3,2,01)
|
|
$ + b02 * CbHYZ3(3,3,2,02)
|
|
$ + b03 * CbHYZ3(3,3,2,03)
|
|
$ + b04 * CbHYZ3(3,3,2,04)
|
|
$ + b05 * CbHYZ3(3,3,2,05)
|
|
$ + b06 * CbHYZ3(3,3,2,06)
|
|
$ + b07 * CbHYZ3(3,3,2,07)
|
|
$ + b08 * CbHYZ3(3,3,2,08)
|
|
$ + b09 * CbHYZ3(3,3,2,09)
|
|
$ + b10 * CbHYZ3(3,3,2,10)
|
|
$ + b11 * CbHYZ3(3,3,2,11)
|
|
$ + b12 * CbHYZ3(3,3,2,12)
|
|
$ + b13 * CbHYZ3(3,3,2,13)
|
|
$ + b14 * CbHYZ3(3,3,2,14)
|
|
$ + b15 * CbHYZ3(3,3,2,15)
|
|
$ + b16 * CbHYZ3(3,3,2,16)
|
|
$ + b17 * CbHYZ3(3,3,2,17)
|
|
$ - HZ1(1) *HYZ2(3,3)
|
|
$ - HZ2(0,1) *HYZ1(3)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,0,3,2) =
|
|
$ + b01 * CbHYZ4(0,0,3,2,01)
|
|
$ + b02 * CbHYZ4(0,0,3,2,02)
|
|
$ + b03 * CbHYZ4(0,0,3,2,03)
|
|
$ + b04 * CbHYZ4(0,0,3,2,04)
|
|
$ + b05 * CbHYZ4(0,0,3,2,05)
|
|
$ + b06 * CbHYZ4(0,0,3,2,06)
|
|
$ + b07 * CbHYZ4(0,0,3,2,07)
|
|
$ + b08 * CbHYZ4(0,0,3,2,08)
|
|
$ + b09 * CbHYZ4(0,0,3,2,09)
|
|
$ + b10 * CbHYZ4(0,0,3,2,10)
|
|
$ + b11 * CbHYZ4(0,0,3,2,11)
|
|
$ + b12 * CbHYZ4(0,0,3,2,12)
|
|
$ + b13 * CbHYZ4(0,0,3,2,13)
|
|
$ + b14 * CbHYZ4(0,0,3,2,14)
|
|
$ + b15 * CbHYZ4(0,0,3,2,15)
|
|
$ + b16 * CbHYZ4(0,0,3,2,16)
|
|
$ + b17 * CbHYZ4(0,0,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,0,3)
|
|
HYZ4(0,2,3,2) =
|
|
$ + b01 * CbHYZ4(0,2,3,2,01)
|
|
$ + b02 * CbHYZ4(0,2,3,2,02)
|
|
$ + b03 * CbHYZ4(0,2,3,2,03)
|
|
$ + b04 * CbHYZ4(0,2,3,2,04)
|
|
$ + b05 * CbHYZ4(0,2,3,2,05)
|
|
$ + b06 * CbHYZ4(0,2,3,2,06)
|
|
$ + b07 * CbHYZ4(0,2,3,2,07)
|
|
$ + b08 * CbHYZ4(0,2,3,2,08)
|
|
$ + b09 * CbHYZ4(0,2,3,2,09)
|
|
$ + b10 * CbHYZ4(0,2,3,2,10)
|
|
$ + b11 * CbHYZ4(0,2,3,2,11)
|
|
$ + b12 * CbHYZ4(0,2,3,2,12)
|
|
$ + b13 * CbHYZ4(0,2,3,2,13)
|
|
$ + b14 * CbHYZ4(0,2,3,2,14)
|
|
$ + b15 * CbHYZ4(0,2,3,2,15)
|
|
$ + b16 * CbHYZ4(0,2,3,2,16)
|
|
$ + b17 * CbHYZ4(0,2,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,2,3)
|
|
HYZ4(0,3,0,2) =
|
|
$ + b01 * CbHYZ4(0,3,0,2,01)
|
|
$ + b02 * CbHYZ4(0,3,0,2,02)
|
|
$ + b03 * CbHYZ4(0,3,0,2,03)
|
|
$ + b04 * CbHYZ4(0,3,0,2,04)
|
|
$ + b05 * CbHYZ4(0,3,0,2,05)
|
|
$ + b06 * CbHYZ4(0,3,0,2,06)
|
|
$ + b07 * CbHYZ4(0,3,0,2,07)
|
|
$ + b08 * CbHYZ4(0,3,0,2,08)
|
|
$ + b09 * CbHYZ4(0,3,0,2,09)
|
|
$ + b10 * CbHYZ4(0,3,0,2,10)
|
|
$ + b11 * CbHYZ4(0,3,0,2,11)
|
|
$ + b12 * CbHYZ4(0,3,0,2,12)
|
|
$ + b13 * CbHYZ4(0,3,0,2,13)
|
|
$ + b14 * CbHYZ4(0,3,0,2,14)
|
|
$ + b15 * CbHYZ4(0,3,0,2,15)
|
|
$ + b16 * CbHYZ4(0,3,0,2,16)
|
|
$ + b17 * CbHYZ4(0,3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ2(0,3)
|
|
$ - HZ2(1,1) *HYZ2(0,3)
|
|
HYZ4(0,3,2,2) =
|
|
$ + b01 * CbHYZ4(0,3,2,2,01)
|
|
$ + b02 * CbHYZ4(0,3,2,2,02)
|
|
$ + b03 * CbHYZ4(0,3,2,2,03)
|
|
$ + b04 * CbHYZ4(0,3,2,2,04)
|
|
$ + b05 * CbHYZ4(0,3,2,2,05)
|
|
$ + b06 * CbHYZ4(0,3,2,2,06)
|
|
$ + b07 * CbHYZ4(0,3,2,2,07)
|
|
$ + b08 * CbHYZ4(0,3,2,2,08)
|
|
$ + b09 * CbHYZ4(0,3,2,2,09)
|
|
$ + b10 * CbHYZ4(0,3,2,2,10)
|
|
$ + b11 * CbHYZ4(0,3,2,2,11)
|
|
$ + b12 * CbHYZ4(0,3,2,2,12)
|
|
$ + b13 * CbHYZ4(0,3,2,2,13)
|
|
$ + b14 * CbHYZ4(0,3,2,2,14)
|
|
$ + b15 * CbHYZ4(0,3,2,2,15)
|
|
$ + b16 * CbHYZ4(0,3,2,2,16)
|
|
$ + b17 * CbHYZ4(0,3,2,2,17)
|
|
$ + HZ2(1,1) *HYZ2(0,3)
|
|
HYZ4(0,3,3,2) =
|
|
$ + b01 * CbHYZ4(0,3,3,2,01)
|
|
$ + b02 * CbHYZ4(0,3,3,2,02)
|
|
$ + b03 * CbHYZ4(0,3,3,2,03)
|
|
$ + b04 * CbHYZ4(0,3,3,2,04)
|
|
$ + b05 * CbHYZ4(0,3,3,2,05)
|
|
$ + b06 * CbHYZ4(0,3,3,2,06)
|
|
$ + b07 * CbHYZ4(0,3,3,2,07)
|
|
$ + b08 * CbHYZ4(0,3,3,2,08)
|
|
$ + b09 * CbHYZ4(0,3,3,2,09)
|
|
$ + b10 * CbHYZ4(0,3,3,2,10)
|
|
$ + b11 * CbHYZ4(0,3,3,2,11)
|
|
$ + b12 * CbHYZ4(0,3,3,2,12)
|
|
$ + b13 * CbHYZ4(0,3,3,2,13)
|
|
$ + b14 * CbHYZ4(0,3,3,2,14)
|
|
$ + b15 * CbHYZ4(0,3,3,2,15)
|
|
$ + b16 * CbHYZ4(0,3,3,2,16)
|
|
$ + b17 * CbHYZ4(0,3,3,2,17)
|
|
$ - HZ1(1) *HYZ3(0,3,3)
|
|
$ - HZ2(0,1) *HYZ2(0,3)
|
|
HYZ4(3,0,0,2) =
|
|
$ + b01 * CbHYZ4(3,0,0,2,01)
|
|
$ + b02 * CbHYZ4(3,0,0,2,02)
|
|
$ + b03 * CbHYZ4(3,0,0,2,03)
|
|
$ + b04 * CbHYZ4(3,0,0,2,04)
|
|
$ + b05 * CbHYZ4(3,0,0,2,05)
|
|
$ + b06 * CbHYZ4(3,0,0,2,06)
|
|
$ + b07 * CbHYZ4(3,0,0,2,07)
|
|
$ + b08 * CbHYZ4(3,0,0,2,08)
|
|
$ + b09 * CbHYZ4(3,0,0,2,09)
|
|
$ + b10 * CbHYZ4(3,0,0,2,10)
|
|
$ + b11 * CbHYZ4(3,0,0,2,11)
|
|
$ + b12 * CbHYZ4(3,0,0,2,12)
|
|
$ + b13 * CbHYZ4(3,0,0,2,13)
|
|
$ + b14 * CbHYZ4(3,0,0,2,14)
|
|
$ + b15 * CbHYZ4(3,0,0,2,15)
|
|
$ + b16 * CbHYZ4(3,0,0,2,16)
|
|
$ + b17 * CbHYZ4(3,0,0,2,17)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(0,1,1) *HYZ1(3)
|
|
$ - HZ3(1,0,1) *HYZ1(3)
|
|
$ - HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,0,2,2) =
|
|
$ + b01 * CbHYZ4(3,0,2,2,01)
|
|
$ + b02 * CbHYZ4(3,0,2,2,02)
|
|
$ + b03 * CbHYZ4(3,0,2,2,03)
|
|
$ + b04 * CbHYZ4(3,0,2,2,04)
|
|
$ + b05 * CbHYZ4(3,0,2,2,05)
|
|
$ + b06 * CbHYZ4(3,0,2,2,06)
|
|
$ + b07 * CbHYZ4(3,0,2,2,07)
|
|
$ + b08 * CbHYZ4(3,0,2,2,08)
|
|
$ + b09 * CbHYZ4(3,0,2,2,09)
|
|
$ + b10 * CbHYZ4(3,0,2,2,10)
|
|
$ + b11 * CbHYZ4(3,0,2,2,11)
|
|
$ + b12 * CbHYZ4(3,0,2,2,12)
|
|
$ + b13 * CbHYZ4(3,0,2,2,13)
|
|
$ + b14 * CbHYZ4(3,0,2,2,14)
|
|
$ + b15 * CbHYZ4(3,0,2,2,15)
|
|
$ + b16 * CbHYZ4(3,0,2,2,16)
|
|
$ + b17 * CbHYZ4(3,0,2,2,17)
|
|
$ + HZ3(0,1,1) *HYZ1(3)
|
|
$ + HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,0,3,2) =
|
|
$ + b01 * CbHYZ4(3,0,3,2,01)
|
|
$ + b02 * CbHYZ4(3,0,3,2,02)
|
|
$ + b03 * CbHYZ4(3,0,3,2,03)
|
|
$ + b04 * CbHYZ4(3,0,3,2,04)
|
|
$ + b05 * CbHYZ4(3,0,3,2,05)
|
|
$ + b06 * CbHYZ4(3,0,3,2,06)
|
|
$ + b07 * CbHYZ4(3,0,3,2,07)
|
|
$ + b08 * CbHYZ4(3,0,3,2,08)
|
|
$ + b09 * CbHYZ4(3,0,3,2,09)
|
|
$ + b10 * CbHYZ4(3,0,3,2,10)
|
|
$ + b11 * CbHYZ4(3,0,3,2,11)
|
|
$ + b12 * CbHYZ4(3,0,3,2,12)
|
|
$ + b13 * CbHYZ4(3,0,3,2,13)
|
|
$ + b14 * CbHYZ4(3,0,3,2,14)
|
|
$ + b15 * CbHYZ4(3,0,3,2,15)
|
|
$ + b16 * CbHYZ4(3,0,3,2,16)
|
|
$ + b17 * CbHYZ4(3,0,3,2,17)
|
|
$ - HZ1(1) *HYZ3(3,0,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(0,1,1) *HYZ1(3)
|
|
HYZ4(3,2,2,2) =
|
|
$ + b01 * CbHYZ4(3,2,2,2,01)
|
|
$ + b02 * CbHYZ4(3,2,2,2,02)
|
|
$ + b03 * CbHYZ4(3,2,2,2,03)
|
|
$ + b04 * CbHYZ4(3,2,2,2,04)
|
|
$ + b05 * CbHYZ4(3,2,2,2,05)
|
|
$ + b06 * CbHYZ4(3,2,2,2,06)
|
|
$ + b07 * CbHYZ4(3,2,2,2,07)
|
|
$ + b08 * CbHYZ4(3,2,2,2,08)
|
|
$ + b09 * CbHYZ4(3,2,2,2,09)
|
|
$ + b10 * CbHYZ4(3,2,2,2,10)
|
|
$ + b11 * CbHYZ4(3,2,2,2,11)
|
|
$ + b12 * CbHYZ4(3,2,2,2,12)
|
|
$ + b13 * CbHYZ4(3,2,2,2,13)
|
|
$ + b14 * CbHYZ4(3,2,2,2,14)
|
|
$ + b15 * CbHYZ4(3,2,2,2,15)
|
|
$ + b16 * CbHYZ4(3,2,2,2,16)
|
|
$ + b17 * CbHYZ4(3,2,2,2,17)
|
|
$ + b18 * CbHYZ4(3,2,2,2,18)
|
|
$ - HZ3(1,1,1) *HYZ1(3)
|
|
HYZ4(3,3,0,2) =
|
|
$ + b01 * CbHYZ4(3,3,0,2,01)
|
|
$ + b02 * CbHYZ4(3,3,0,2,02)
|
|
$ + b03 * CbHYZ4(3,3,0,2,03)
|
|
$ + b04 * CbHYZ4(3,3,0,2,04)
|
|
$ + b05 * CbHYZ4(3,3,0,2,05)
|
|
$ + b06 * CbHYZ4(3,3,0,2,06)
|
|
$ + b07 * CbHYZ4(3,3,0,2,07)
|
|
$ + b08 * CbHYZ4(3,3,0,2,08)
|
|
$ + b09 * CbHYZ4(3,3,0,2,09)
|
|
$ + b10 * CbHYZ4(3,3,0,2,10)
|
|
$ + b11 * CbHYZ4(3,3,0,2,11)
|
|
$ + b12 * CbHYZ4(3,3,0,2,12)
|
|
$ + b13 * CbHYZ4(3,3,0,2,13)
|
|
$ + b14 * CbHYZ4(3,3,0,2,14)
|
|
$ + b15 * CbHYZ4(3,3,0,2,15)
|
|
$ + b16 * CbHYZ4(3,3,0,2,16)
|
|
$ + b17 * CbHYZ4(3,3,0,2,17)
|
|
$ - HZ2(0,1) *HYZ2(3,3)
|
|
$ - HZ2(1,1) *HYZ2(3,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,3,2,2) =
|
|
$ + b01 * CbHYZ4(3,3,2,2,01)
|
|
$ + b02 * CbHYZ4(3,3,2,2,02)
|
|
$ + b03 * CbHYZ4(3,3,2,2,03)
|
|
$ + b04 * CbHYZ4(3,3,2,2,04)
|
|
$ + b05 * CbHYZ4(3,3,2,2,05)
|
|
$ + b06 * CbHYZ4(3,3,2,2,06)
|
|
$ + b07 * CbHYZ4(3,3,2,2,07)
|
|
$ + b08 * CbHYZ4(3,3,2,2,08)
|
|
$ + b09 * CbHYZ4(3,3,2,2,09)
|
|
$ + b10 * CbHYZ4(3,3,2,2,10)
|
|
$ + b11 * CbHYZ4(3,3,2,2,11)
|
|
$ + b12 * CbHYZ4(3,3,2,2,12)
|
|
$ + b13 * CbHYZ4(3,3,2,2,13)
|
|
$ + b14 * CbHYZ4(3,3,2,2,14)
|
|
$ + b15 * CbHYZ4(3,3,2,2,15)
|
|
$ + b16 * CbHYZ4(3,3,2,2,16)
|
|
$ + b17 * CbHYZ4(3,3,2,2,17)
|
|
$ + b18 * CbHYZ4(3,3,2,2,18)
|
|
$ + HZ2(1,1) *HYZ2(3,3)
|
|
$ + HZ3(0,1,1) *HYZ1(3)
|
|
$ + HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,3,3,2) =
|
|
$ + b01 * CbHYZ4(3,3,3,2,01)
|
|
$ + b02 * CbHYZ4(3,3,3,2,02)
|
|
$ + b03 * CbHYZ4(3,3,3,2,03)
|
|
$ + b04 * CbHYZ4(3,3,3,2,04)
|
|
$ + b05 * CbHYZ4(3,3,3,2,05)
|
|
$ + b06 * CbHYZ4(3,3,3,2,06)
|
|
$ + b07 * CbHYZ4(3,3,3,2,07)
|
|
$ + b08 * CbHYZ4(3,3,3,2,08)
|
|
$ + b09 * CbHYZ4(3,3,3,2,09)
|
|
$ + b10 * CbHYZ4(3,3,3,2,10)
|
|
$ + b11 * CbHYZ4(3,3,3,2,11)
|
|
$ + b12 * CbHYZ4(3,3,3,2,12)
|
|
$ + b13 * CbHYZ4(3,3,3,2,13)
|
|
$ + b14 * CbHYZ4(3,3,3,2,14)
|
|
$ + b15 * CbHYZ4(3,3,3,2,15)
|
|
$ + b16 * CbHYZ4(3,3,3,2,16)
|
|
$ + b17 * CbHYZ4(3,3,3,2,17)
|
|
$ + b18 * CbHYZ4(3,3,3,2,18)
|
|
$ - HZ1(1) *HYZ3(3,3,3)
|
|
$ - HZ2(0,1) *HYZ2(3,3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
endif
|
|
return
|
|
|
|
end
|
|
|
|
subroutine fillirr2dhpl321(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl321(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (3,2,1) *****
|
|
***** up to weight n using the ONLY EXPANDED contributions *****
|
|
***** to the z-dependent expansion coefficients *****
|
|
***** applicable for z<0.5 *****
|
|
***** treatment of terms non-analytic in z=1: *****
|
|
***** in expanded form (z<0.5: call fillcoeff2dhpl321u) *****
|
|
***** this routine is also invoked by *****
|
|
***** fillirr2dhpl321e, which handles the exact coefficients *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: CsHYZ2,CsHYZ3,CsHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
dimension CsHYZ2(0:3,0:3,22),CsHYZ3(0:3,0:3,0:3,22),
|
|
$ CsHYZ4(0:3,0:3,0:3,0:3,22)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_s/
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
save CsHYZ2,CsHYZ3,CsHYZ4
|
|
!$omp threadprivate(CsHYZ2,CsHYZ3,CsHYZ4,/com_tdhpl_s/,/com_tdhpl_HPL2/)
|
|
|
|
if (iflag.eq.1.or.iflag.eq.-1) then
|
|
call fillcoeff2dhpl321(iflag,n,CsHYZ2,CsHYZ3,CsHYZ4)
|
|
if (iflag.gt.0)
|
|
$ call fillcoeff2dhpl321u(iflag,n,CsHYZ2,CsHYZ3,CsHYZ4)
|
|
endif
|
|
|
|
* 2001-04-20:16:55:01.hpl
|
|
* <- HPLexpand.321tcut
|
|
* produced by form-to-fortr for gehrt@pcth78
|
|
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(2,3,1) =
|
|
$ + s02 * CsHYZ3(2,3,1,02)
|
|
$ + s03 * CsHYZ3(2,3,1,03)
|
|
$ + s04 * CsHYZ3(2,3,1,04)
|
|
$ + s05 * CsHYZ3(2,3,1,05)
|
|
$ + s06 * CsHYZ3(2,3,1,06)
|
|
$ + s07 * CsHYZ3(2,3,1,07)
|
|
$ + s08 * CsHYZ3(2,3,1,08)
|
|
$ + s09 * CsHYZ3(2,3,1,09)
|
|
$ + s10 * CsHYZ3(2,3,1,10)
|
|
$ + s11 * CsHYZ3(2,3,1,11)
|
|
$ + s12 * CsHYZ3(2,3,1,12)
|
|
$ + s13 * CsHYZ3(2,3,1,13)
|
|
$ + s14 * CsHYZ3(2,3,1,14)
|
|
$ + s15 * CsHYZ3(2,3,1,15)
|
|
$ + s16 * CsHYZ3(2,3,1,16)
|
|
$ + s17 * CsHYZ3(2,3,1,17)
|
|
$ + s18 * CsHYZ3(2,3,1,18)
|
|
$ + s19 * CsHYZ3(2,3,1,19)
|
|
$ - HZ1( -1)*HYZ2(2,3)
|
|
HYZ3(3,2,1) =
|
|
$ + s01 * CsHYZ3(3,2,1,01)
|
|
$ + s02 * CsHYZ3(3,2,1,02)
|
|
$ + s03 * CsHYZ3(3,2,1,03)
|
|
$ + s04 * CsHYZ3(3,2,1,04)
|
|
$ + s05 * CsHYZ3(3,2,1,05)
|
|
$ + s06 * CsHYZ3(3,2,1,06)
|
|
$ + s07 * CsHYZ3(3,2,1,07)
|
|
$ + s08 * CsHYZ3(3,2,1,08)
|
|
$ + s09 * CsHYZ3(3,2,1,09)
|
|
$ + s10 * CsHYZ3(3,2,1,10)
|
|
$ + s11 * CsHYZ3(3,2,1,11)
|
|
$ + s12 * CsHYZ3(3,2,1,12)
|
|
$ + s13 * CsHYZ3(3,2,1,13)
|
|
$ + s14 * CsHYZ3(3,2,1,14)
|
|
$ + s15 * CsHYZ3(3,2,1,15)
|
|
$ + s16 * CsHYZ3(3,2,1,16)
|
|
$ + s17 * CsHYZ3(3,2,1,17)
|
|
$ + s18 * CsHYZ3(3,2,1,18)
|
|
$ + s19 * CsHYZ3(3,2,1,19)
|
|
$ - HZ2(0, -1)*HYZ1(3)
|
|
$ + HZ2(0,1) *HYZ1(3)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,2,3,1) =
|
|
$ + s02 * CsHYZ4(0,2,3,1,02)
|
|
$ + s03 * CsHYZ4(0,2,3,1,03)
|
|
$ + s04 * CsHYZ4(0,2,3,1,04)
|
|
$ + s05 * CsHYZ4(0,2,3,1,05)
|
|
$ + s06 * CsHYZ4(0,2,3,1,06)
|
|
$ + s07 * CsHYZ4(0,2,3,1,07)
|
|
$ + s08 * CsHYZ4(0,2,3,1,08)
|
|
$ + s09 * CsHYZ4(0,2,3,1,09)
|
|
$ + s10 * CsHYZ4(0,2,3,1,10)
|
|
$ + s11 * CsHYZ4(0,2,3,1,11)
|
|
$ + s12 * CsHYZ4(0,2,3,1,12)
|
|
$ + s13 * CsHYZ4(0,2,3,1,13)
|
|
$ + s14 * CsHYZ4(0,2,3,1,14)
|
|
$ + s15 * CsHYZ4(0,2,3,1,15)
|
|
$ + s16 * CsHYZ4(0,2,3,1,16)
|
|
$ + s17 * CsHYZ4(0,2,3,1,17)
|
|
$ + s18 * CsHYZ4(0,2,3,1,18)
|
|
$ - HZ1( -1)*HYZ3(0,2,3)
|
|
HYZ4(0,3,2,1) =
|
|
$ + s01 * CsHYZ4(0,3,2,1,01)
|
|
$ + s02 * CsHYZ4(0,3,2,1,02)
|
|
$ + s03 * CsHYZ4(0,3,2,1,03)
|
|
$ + s04 * CsHYZ4(0,3,2,1,04)
|
|
$ + s05 * CsHYZ4(0,3,2,1,05)
|
|
$ + s06 * CsHYZ4(0,3,2,1,06)
|
|
$ + s07 * CsHYZ4(0,3,2,1,07)
|
|
$ + s08 * CsHYZ4(0,3,2,1,08)
|
|
$ + s09 * CsHYZ4(0,3,2,1,09)
|
|
$ + s10 * CsHYZ4(0,3,2,1,10)
|
|
$ + s11 * CsHYZ4(0,3,2,1,11)
|
|
$ + s12 * CsHYZ4(0,3,2,1,12)
|
|
$ + s13 * CsHYZ4(0,3,2,1,13)
|
|
$ + s14 * CsHYZ4(0,3,2,1,14)
|
|
$ + s15 * CsHYZ4(0,3,2,1,15)
|
|
$ + s16 * CsHYZ4(0,3,2,1,16)
|
|
$ + s17 * CsHYZ4(0,3,2,1,17)
|
|
$ + s18 * CsHYZ4(0,3,2,1,18)
|
|
$ - HZ2(0, -1)*HYZ2(0,3)
|
|
$ + HZ2(0,1) *HYZ2(0,3)
|
|
HYZ4(2,0,3,1) =
|
|
$ + s02 * CsHYZ4(2,0,3,1,02)
|
|
$ + s03 * CsHYZ4(2,0,3,1,03)
|
|
$ + s04 * CsHYZ4(2,0,3,1,04)
|
|
$ + s05 * CsHYZ4(2,0,3,1,05)
|
|
$ + s06 * CsHYZ4(2,0,3,1,06)
|
|
$ + s07 * CsHYZ4(2,0,3,1,07)
|
|
$ + s08 * CsHYZ4(2,0,3,1,08)
|
|
$ + s09 * CsHYZ4(2,0,3,1,09)
|
|
$ + s10 * CsHYZ4(2,0,3,1,10)
|
|
$ + s11 * CsHYZ4(2,0,3,1,11)
|
|
$ + s12 * CsHYZ4(2,0,3,1,12)
|
|
$ + s13 * CsHYZ4(2,0,3,1,13)
|
|
$ + s14 * CsHYZ4(2,0,3,1,14)
|
|
$ + s15 * CsHYZ4(2,0,3,1,15)
|
|
$ + s16 * CsHYZ4(2,0,3,1,16)
|
|
$ + s17 * CsHYZ4(2,0,3,1,17)
|
|
$ + s18 * CsHYZ4(2,0,3,1,18)
|
|
$ - HZ1( -1)*HYZ3(2,0,3)
|
|
HYZ4(2,2,3,1) =
|
|
$ + s03 * CsHYZ4(2,2,3,1,03)
|
|
$ + s04 * CsHYZ4(2,2,3,1,04)
|
|
$ + s05 * CsHYZ4(2,2,3,1,05)
|
|
$ + s06 * CsHYZ4(2,2,3,1,06)
|
|
$ + s07 * CsHYZ4(2,2,3,1,07)
|
|
$ + s08 * CsHYZ4(2,2,3,1,08)
|
|
$ + s09 * CsHYZ4(2,2,3,1,09)
|
|
$ + s10 * CsHYZ4(2,2,3,1,10)
|
|
$ + s11 * CsHYZ4(2,2,3,1,11)
|
|
$ + s12 * CsHYZ4(2,2,3,1,12)
|
|
$ + s13 * CsHYZ4(2,2,3,1,13)
|
|
$ + s14 * CsHYZ4(2,2,3,1,14)
|
|
$ + s15 * CsHYZ4(2,2,3,1,15)
|
|
$ + s16 * CsHYZ4(2,2,3,1,16)
|
|
$ + s17 * CsHYZ4(2,2,3,1,17)
|
|
$ + s18 * CsHYZ4(2,2,3,1,18)
|
|
$ - HZ1( -1)*HYZ3(2,2,3)
|
|
HYZ4(2,3,0,1) =
|
|
$ + s02 * CsHYZ4(2,3,0,1,02)
|
|
$ + s03 * CsHYZ4(2,3,0,1,03)
|
|
$ + s04 * CsHYZ4(2,3,0,1,04)
|
|
$ + s05 * CsHYZ4(2,3,0,1,05)
|
|
$ + s06 * CsHYZ4(2,3,0,1,06)
|
|
$ + s07 * CsHYZ4(2,3,0,1,07)
|
|
$ + s08 * CsHYZ4(2,3,0,1,08)
|
|
$ + s09 * CsHYZ4(2,3,0,1,09)
|
|
$ + s10 * CsHYZ4(2,3,0,1,10)
|
|
$ + s11 * CsHYZ4(2,3,0,1,11)
|
|
$ + s12 * CsHYZ4(2,3,0,1,12)
|
|
$ + s13 * CsHYZ4(2,3,0,1,13)
|
|
$ + s14 * CsHYZ4(2,3,0,1,14)
|
|
$ + s15 * CsHYZ4(2,3,0,1,15)
|
|
$ + s16 * CsHYZ4(2,3,0,1,16)
|
|
$ + s17 * CsHYZ4(2,3,0,1,17)
|
|
$ + s18 * CsHYZ4(2,3,0,1,18)
|
|
$ - HZ2(0, -1)*HYZ2(2,3)
|
|
HYZ4(2,3,1,1) =
|
|
$ + s02 * CsHYZ4(2,3,1,1,02)
|
|
$ + s03 * CsHYZ4(2,3,1,1,03)
|
|
$ + s04 * CsHYZ4(2,3,1,1,04)
|
|
$ + s05 * CsHYZ4(2,3,1,1,05)
|
|
$ + s06 * CsHYZ4(2,3,1,1,06)
|
|
$ + s07 * CsHYZ4(2,3,1,1,07)
|
|
$ + s08 * CsHYZ4(2,3,1,1,08)
|
|
$ + s09 * CsHYZ4(2,3,1,1,09)
|
|
$ + s10 * CsHYZ4(2,3,1,1,10)
|
|
$ + s11 * CsHYZ4(2,3,1,1,11)
|
|
$ + s12 * CsHYZ4(2,3,1,1,12)
|
|
$ + s13 * CsHYZ4(2,3,1,1,13)
|
|
$ + s14 * CsHYZ4(2,3,1,1,14)
|
|
$ + s15 * CsHYZ4(2,3,1,1,15)
|
|
$ + s16 * CsHYZ4(2,3,1,1,16)
|
|
$ + s17 * CsHYZ4(2,3,1,1,17)
|
|
$ + s18 * CsHYZ4(2,3,1,1,18)
|
|
$ + s19 * CsHYZ4(2,3,1,1,19)
|
|
$ + s20 * CsHYZ4(2,3,1,1,20)
|
|
$ + HZ2( -1,-1)*HYZ2(2,3)
|
|
HYZ4(2,3,2,1) =
|
|
$ + s02 * CsHYZ4(2,3,2,1,02)
|
|
$ + s03 * CsHYZ4(2,3,2,1,03)
|
|
$ + s04 * CsHYZ4(2,3,2,1,04)
|
|
$ + s05 * CsHYZ4(2,3,2,1,05)
|
|
$ + s06 * CsHYZ4(2,3,2,1,06)
|
|
$ + s07 * CsHYZ4(2,3,2,1,07)
|
|
$ + s08 * CsHYZ4(2,3,2,1,08)
|
|
$ + s09 * CsHYZ4(2,3,2,1,09)
|
|
$ + s10 * CsHYZ4(2,3,2,1,10)
|
|
$ + s11 * CsHYZ4(2,3,2,1,11)
|
|
$ + s12 * CsHYZ4(2,3,2,1,12)
|
|
$ + s13 * CsHYZ4(2,3,2,1,13)
|
|
$ + s14 * CsHYZ4(2,3,2,1,14)
|
|
$ + s15 * CsHYZ4(2,3,2,1,15)
|
|
$ + s16 * CsHYZ4(2,3,2,1,16)
|
|
$ + s17 * CsHYZ4(2,3,2,1,17)
|
|
$ + s18 * CsHYZ4(2,3,2,1,18)
|
|
$ - HZ2(0, -1)*HYZ2(2,3)
|
|
$ + HZ2(0,1) *HYZ2(2,3)
|
|
HYZ4(2,3,3,1) =
|
|
$ + s02 * CsHYZ4(2,3,3,1,02)
|
|
$ + s03 * CsHYZ4(2,3,3,1,03)
|
|
$ + s04 * CsHYZ4(2,3,3,1,04)
|
|
$ + s05 * CsHYZ4(2,3,3,1,05)
|
|
$ + s06 * CsHYZ4(2,3,3,1,06)
|
|
$ + s07 * CsHYZ4(2,3,3,1,07)
|
|
$ + s08 * CsHYZ4(2,3,3,1,08)
|
|
$ + s09 * CsHYZ4(2,3,3,1,09)
|
|
$ + s10 * CsHYZ4(2,3,3,1,10)
|
|
$ + s11 * CsHYZ4(2,3,3,1,11)
|
|
$ + s12 * CsHYZ4(2,3,3,1,12)
|
|
$ + s13 * CsHYZ4(2,3,3,1,13)
|
|
$ + s14 * CsHYZ4(2,3,3,1,14)
|
|
$ + s15 * CsHYZ4(2,3,3,1,15)
|
|
$ + s16 * CsHYZ4(2,3,3,1,16)
|
|
$ + s17 * CsHYZ4(2,3,3,1,17)
|
|
$ + s18 * CsHYZ4(2,3,3,1,18)
|
|
$ - HZ1( -1)*HYZ3(2,3,3)
|
|
$ + HZ2( -1,-1)*HYZ2(2,3)
|
|
$ - HZ2(0, -1)*HYZ2(2,3)
|
|
HYZ4(3,0,2,1) =
|
|
$ + s01 * CsHYZ4(3,0,2,1,01)
|
|
$ + s02 * CsHYZ4(3,0,2,1,02)
|
|
$ + s03 * CsHYZ4(3,0,2,1,03)
|
|
$ + s04 * CsHYZ4(3,0,2,1,04)
|
|
$ + s05 * CsHYZ4(3,0,2,1,05)
|
|
$ + s06 * CsHYZ4(3,0,2,1,06)
|
|
$ + s07 * CsHYZ4(3,0,2,1,07)
|
|
$ + s08 * CsHYZ4(3,0,2,1,08)
|
|
$ + s09 * CsHYZ4(3,0,2,1,09)
|
|
$ + s10 * CsHYZ4(3,0,2,1,10)
|
|
$ + s11 * CsHYZ4(3,0,2,1,11)
|
|
$ + s12 * CsHYZ4(3,0,2,1,12)
|
|
$ + s13 * CsHYZ4(3,0,2,1,13)
|
|
$ + s14 * CsHYZ4(3,0,2,1,14)
|
|
$ + s15 * CsHYZ4(3,0,2,1,15)
|
|
$ + s16 * CsHYZ4(3,0,2,1,16)
|
|
$ + s17 * CsHYZ4(3,0,2,1,17)
|
|
$ + s18 * CsHYZ4(3,0,2,1,18)
|
|
$ - 2.000000000000000d+00*HZ3(0,0,-1)*HYZ1(3)
|
|
$ + 2.000000000000000d+00*HZ3(0,0,1)*HYZ1(3)
|
|
$ + HZ3(0,1,1) *HYZ1(3)
|
|
$ - 2.000000000000000d+00*HZ3(1,0,-1)*HYZ1(3)
|
|
$ + HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,1,2,1) =
|
|
$ + s01 * CsHYZ4(3,1,2,1,01)
|
|
$ + s02 * CsHYZ4(3,1,2,1,02)
|
|
$ + s03 * CsHYZ4(3,1,2,1,03)
|
|
$ + s04 * CsHYZ4(3,1,2,1,04)
|
|
$ + s05 * CsHYZ4(3,1,2,1,05)
|
|
$ + s06 * CsHYZ4(3,1,2,1,06)
|
|
$ + s07 * CsHYZ4(3,1,2,1,07)
|
|
$ + s08 * CsHYZ4(3,1,2,1,08)
|
|
$ + s09 * CsHYZ4(3,1,2,1,09)
|
|
$ + s10 * CsHYZ4(3,1,2,1,10)
|
|
$ + s11 * CsHYZ4(3,1,2,1,11)
|
|
$ + s12 * CsHYZ4(3,1,2,1,12)
|
|
$ + s13 * CsHYZ4(3,1,2,1,13)
|
|
$ + s14 * CsHYZ4(3,1,2,1,14)
|
|
$ + s15 * CsHYZ4(3,1,2,1,15)
|
|
$ + s16 * CsHYZ4(3,1,2,1,16)
|
|
$ + s17 * CsHYZ4(3,1,2,1,17)
|
|
$ + s18 * CsHYZ4(3,1,2,1,18)
|
|
$ + s19 * CsHYZ4(3,1,2,1,19)
|
|
$ + s20 * CsHYZ4(3,1,2,1,20)
|
|
$ + s21 * CsHYZ4(3,1,2,1,21)
|
|
$ + HZ3( -1,0,-1)*HYZ1(3)
|
|
$ - HZ3( -1,0,1)*HYZ1(3)
|
|
$ - HZ3(0, -1,1)*HYZ1(3)
|
|
$ - 2.000000000000000d+00*HZ3(0,0,-1)*HYZ1(3)
|
|
$ + 2.000000000000000d+00*HZ3(0,0,1)*HYZ1(3)
|
|
$ - HZ3(0,1, -1)*HYZ1(3)
|
|
HYZ4(3,2,0,1) =
|
|
$ + s01 * CsHYZ4(3,2,0,1,01)
|
|
$ + s02 * CsHYZ4(3,2,0,1,02)
|
|
$ + s03 * CsHYZ4(3,2,0,1,03)
|
|
$ + s04 * CsHYZ4(3,2,0,1,04)
|
|
$ + s05 * CsHYZ4(3,2,0,1,05)
|
|
$ + s06 * CsHYZ4(3,2,0,1,06)
|
|
$ + s07 * CsHYZ4(3,2,0,1,07)
|
|
$ + s08 * CsHYZ4(3,2,0,1,08)
|
|
$ + s09 * CsHYZ4(3,2,0,1,09)
|
|
$ + s10 * CsHYZ4(3,2,0,1,10)
|
|
$ + s11 * CsHYZ4(3,2,0,1,11)
|
|
$ + s12 * CsHYZ4(3,2,0,1,12)
|
|
$ + s13 * CsHYZ4(3,2,0,1,13)
|
|
$ + s14 * CsHYZ4(3,2,0,1,14)
|
|
$ + s15 * CsHYZ4(3,2,0,1,15)
|
|
$ + s16 * CsHYZ4(3,2,0,1,16)
|
|
$ + s17 * CsHYZ4(3,2,0,1,17)
|
|
$ + s18 * CsHYZ4(3,2,0,1,18)
|
|
$ + 2.000000000000000d+00*HZ3(1,0,-1)*HYZ1(3)
|
|
$ - HZ3(1,0,1) *HYZ1(3)
|
|
HYZ4(3,2,1,1) =
|
|
$ + s01 * CsHYZ4(3,2,1,1,01)
|
|
$ + s02 * CsHYZ4(3,2,1,1,02)
|
|
$ + s03 * CsHYZ4(3,2,1,1,03)
|
|
$ + s04 * CsHYZ4(3,2,1,1,04)
|
|
$ + s05 * CsHYZ4(3,2,1,1,05)
|
|
$ + s06 * CsHYZ4(3,2,1,1,06)
|
|
$ + s07 * CsHYZ4(3,2,1,1,07)
|
|
$ + s08 * CsHYZ4(3,2,1,1,08)
|
|
$ + s09 * CsHYZ4(3,2,1,1,09)
|
|
$ + s10 * CsHYZ4(3,2,1,1,10)
|
|
$ + s11 * CsHYZ4(3,2,1,1,11)
|
|
$ + s12 * CsHYZ4(3,2,1,1,12)
|
|
$ + s13 * CsHYZ4(3,2,1,1,13)
|
|
$ + s14 * CsHYZ4(3,2,1,1,14)
|
|
$ + s15 * CsHYZ4(3,2,1,1,15)
|
|
$ + s16 * CsHYZ4(3,2,1,1,16)
|
|
$ + s17 * CsHYZ4(3,2,1,1,17)
|
|
$ + s18 * CsHYZ4(3,2,1,1,18)
|
|
$ + s19 * CsHYZ4(3,2,1,1,19)
|
|
$ + s20 * CsHYZ4(3,2,1,1,20)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
$ + HZ3(0,0, -1)*HYZ1(3)
|
|
$ - HZ3(0,0,1) *HYZ1(3)
|
|
HYZ4(3,2,2,1) =
|
|
$ + s01 * CsHYZ4(3,2,2,1,01)
|
|
$ + s02 * CsHYZ4(3,2,2,1,02)
|
|
$ + s03 * CsHYZ4(3,2,2,1,03)
|
|
$ + s04 * CsHYZ4(3,2,2,1,04)
|
|
$ + s05 * CsHYZ4(3,2,2,1,05)
|
|
$ + s06 * CsHYZ4(3,2,2,1,06)
|
|
$ + s07 * CsHYZ4(3,2,2,1,07)
|
|
$ + s08 * CsHYZ4(3,2,2,1,08)
|
|
$ + s09 * CsHYZ4(3,2,2,1,09)
|
|
$ + s10 * CsHYZ4(3,2,2,1,10)
|
|
$ + s11 * CsHYZ4(3,2,2,1,11)
|
|
$ + s12 * CsHYZ4(3,2,2,1,12)
|
|
$ + s13 * CsHYZ4(3,2,2,1,13)
|
|
$ + s14 * CsHYZ4(3,2,2,1,14)
|
|
$ + s15 * CsHYZ4(3,2,2,1,15)
|
|
$ + s16 * CsHYZ4(3,2,2,1,16)
|
|
$ + s17 * CsHYZ4(3,2,2,1,17)
|
|
$ + s18 * CsHYZ4(3,2,2,1,18)
|
|
$ - HZ3(0,0, -1)*HYZ1(3)
|
|
$ + HZ3(0,0,1) *HYZ1(3)
|
|
$ - HZ3(0,1,1) *HYZ1(3)
|
|
HYZ4(3,2,3,1) =
|
|
$ + s01 * CsHYZ4(3,2,3,1,01)
|
|
$ + s02 * CsHYZ4(3,2,3,1,02)
|
|
$ + s03 * CsHYZ4(3,2,3,1,03)
|
|
$ + s04 * CsHYZ4(3,2,3,1,04)
|
|
$ + s05 * CsHYZ4(3,2,3,1,05)
|
|
$ + s06 * CsHYZ4(3,2,3,1,06)
|
|
$ + s07 * CsHYZ4(3,2,3,1,07)
|
|
$ + s08 * CsHYZ4(3,2,3,1,08)
|
|
$ + s09 * CsHYZ4(3,2,3,1,09)
|
|
$ + s10 * CsHYZ4(3,2,3,1,10)
|
|
$ + s11 * CsHYZ4(3,2,3,1,11)
|
|
$ + s12 * CsHYZ4(3,2,3,1,12)
|
|
$ + s13 * CsHYZ4(3,2,3,1,13)
|
|
$ + s14 * CsHYZ4(3,2,3,1,14)
|
|
$ + s15 * CsHYZ4(3,2,3,1,15)
|
|
$ + s16 * CsHYZ4(3,2,3,1,16)
|
|
$ + s17 * CsHYZ4(3,2,3,1,17)
|
|
$ + s18 * CsHYZ4(3,2,3,1,18)
|
|
$ - HZ1( -1)*HYZ3(3,2,3)
|
|
$ + HZ3( -1,0,-1)*HYZ1(3)
|
|
$ - HZ3( -1,0,1)*HYZ1(3)
|
|
$ + HZ3(0, -1,1)*HYZ1(3)
|
|
$ + HZ3(0,1, -1)*HYZ1(3)
|
|
HYZ4(3,3,2,1) =
|
|
$ + s01 * CsHYZ4(3,3,2,1,01)
|
|
$ + s02 * CsHYZ4(3,3,2,1,02)
|
|
$ + s03 * CsHYZ4(3,3,2,1,03)
|
|
$ + s04 * CsHYZ4(3,3,2,1,04)
|
|
$ + s05 * CsHYZ4(3,3,2,1,05)
|
|
$ + s06 * CsHYZ4(3,3,2,1,06)
|
|
$ + s07 * CsHYZ4(3,3,2,1,07)
|
|
$ + s08 * CsHYZ4(3,3,2,1,08)
|
|
$ + s09 * CsHYZ4(3,3,2,1,09)
|
|
$ + s10 * CsHYZ4(3,3,2,1,10)
|
|
$ + s11 * CsHYZ4(3,3,2,1,11)
|
|
$ + s12 * CsHYZ4(3,3,2,1,12)
|
|
$ + s13 * CsHYZ4(3,3,2,1,13)
|
|
$ + s14 * CsHYZ4(3,3,2,1,14)
|
|
$ + s15 * CsHYZ4(3,3,2,1,15)
|
|
$ + s16 * CsHYZ4(3,3,2,1,16)
|
|
$ + s17 * CsHYZ4(3,3,2,1,17)
|
|
$ + s18 * CsHYZ4(3,3,2,1,18)
|
|
$ - HZ2(0, -1)*HYZ2(3,3)
|
|
$ + HZ2(0,1) *HYZ2(3,3)
|
|
$ + HZ3(0, -1,-1)*HYZ1(3)
|
|
$ - 2.000000000000000d+00*HZ3(0,0,-1)*HYZ1(3)
|
|
$ + 2.000000000000000d+00*HZ3(0,0,1)*HYZ1(3)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
subroutine fillirr2dhpl321e(iflag,n)
|
|
*********************************************************************
|
|
***** fillirr2dhpl321e(iflag,n) fills the irreducible 2dHPL *****
|
|
***** with indices (3,2,1) *****
|
|
***** up to weight n with EXPANDED z-dependent *****
|
|
***** expansion coefficients for all terms *****
|
|
***** which are analytic in z=1 *****
|
|
***** and EXACT z-dependent *****
|
|
***** expansion coefficients for all terms *****
|
|
***** terms non-analytic in z=1, *****
|
|
***** (z>0.5: call fillcoeff2dhpl321e) *****
|
|
***** applicable for z>0.5 *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp)::
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
dimension CbHYZ1(3:3,22),CbHYZ2(0:3,0:3,22),
|
|
$ CbHYZ3(0:3,0:3,0:3,22),CbHYZ4(0:3,0:3,0:3,0:3,22)
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
common /com_tdhpl_aux/CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4
|
|
common /com_tdhpl_b/
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
!$omp threadprivate(/com_tdhpl_HPL2/,/com_tdhpl_b/,/com_tdhpl_aux/)
|
|
|
|
iflag = -iflag
|
|
call fillirr2dhpl321(iflag,n)
|
|
iflag = -iflag
|
|
if (iflag.eq.1) then
|
|
call fillcoeff2dhplaux(iflag,n,CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4)
|
|
call fillcoeff2dhpl321e(iflag,n,CbHYZ1,CbHYZ2,CbHYZ3,CbHYZ4)
|
|
endif
|
|
|
|
* 2001-04-20:17:05:41.hpl
|
|
* <- HPLexpand.321enew
|
|
* produced by form-to-fortr for gehrt@pcth78
|
|
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(3,2,1) = HYZ3(3,2,1)
|
|
$ + b01 * CbHYZ3(3,2,1,01)
|
|
$ + b02 * CbHYZ3(3,2,1,02)
|
|
$ + b03 * CbHYZ3(3,2,1,03)
|
|
$ + b04 * CbHYZ3(3,2,1,04)
|
|
$ + b05 * CbHYZ3(3,2,1,05)
|
|
$ + b06 * CbHYZ3(3,2,1,06)
|
|
$ + b07 * CbHYZ3(3,2,1,07)
|
|
$ + b08 * CbHYZ3(3,2,1,08)
|
|
$ + b09 * CbHYZ3(3,2,1,09)
|
|
$ + b10 * CbHYZ3(3,2,1,10)
|
|
$ + b11 * CbHYZ3(3,2,1,11)
|
|
$ + b12 * CbHYZ3(3,2,1,12)
|
|
$ + b13 * CbHYZ3(3,2,1,13)
|
|
$ + b14 * CbHYZ3(3,2,1,14)
|
|
$ + b15 * CbHYZ3(3,2,1,15)
|
|
$ + b16 * CbHYZ3(3,2,1,16)
|
|
$ + b17 * CbHYZ3(3,2,1,17)
|
|
$ + b18 * CbHYZ3(3,2,1,18)
|
|
$ + b19 * CbHYZ3(3,2,1,19)
|
|
$ + b20 * CbHYZ3(3,2,1,20)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,3,2,1) = HYZ4(0,3,2,1)
|
|
$ + b01 * CbHYZ4(0,3,2,1,01)
|
|
$ + b02 * CbHYZ4(0,3,2,1,02)
|
|
$ + b03 * CbHYZ4(0,3,2,1,03)
|
|
$ + b04 * CbHYZ4(0,3,2,1,04)
|
|
$ + b05 * CbHYZ4(0,3,2,1,05)
|
|
$ + b06 * CbHYZ4(0,3,2,1,06)
|
|
$ + b07 * CbHYZ4(0,3,2,1,07)
|
|
$ + b08 * CbHYZ4(0,3,2,1,08)
|
|
$ + b09 * CbHYZ4(0,3,2,1,09)
|
|
$ + b10 * CbHYZ4(0,3,2,1,10)
|
|
$ + b11 * CbHYZ4(0,3,2,1,11)
|
|
$ + b12 * CbHYZ4(0,3,2,1,12)
|
|
$ + b13 * CbHYZ4(0,3,2,1,13)
|
|
$ + b14 * CbHYZ4(0,3,2,1,14)
|
|
$ + b15 * CbHYZ4(0,3,2,1,15)
|
|
$ + b16 * CbHYZ4(0,3,2,1,16)
|
|
$ + b17 * CbHYZ4(0,3,2,1,17)
|
|
$ + b18 * CbHYZ4(0,3,2,1,18)
|
|
$ + b19 * CbHYZ4(0,3,2,1,19)
|
|
HYZ4(2,3,2,1) = HYZ4(2,3,2,1)
|
|
$ + b01 * CbHYZ4(2,3,2,1,01)
|
|
$ + b02 * CbHYZ4(2,3,2,1,02)
|
|
$ + b03 * CbHYZ4(2,3,2,1,03)
|
|
$ + b04 * CbHYZ4(2,3,2,1,04)
|
|
$ + b05 * CbHYZ4(2,3,2,1,05)
|
|
$ + b06 * CbHYZ4(2,3,2,1,06)
|
|
$ + b07 * CbHYZ4(2,3,2,1,07)
|
|
$ + b08 * CbHYZ4(2,3,2,1,08)
|
|
$ + b09 * CbHYZ4(2,3,2,1,09)
|
|
$ + b10 * CbHYZ4(2,3,2,1,10)
|
|
$ + b11 * CbHYZ4(2,3,2,1,11)
|
|
$ + b12 * CbHYZ4(2,3,2,1,12)
|
|
$ + b13 * CbHYZ4(2,3,2,1,13)
|
|
$ + b14 * CbHYZ4(2,3,2,1,14)
|
|
$ + b15 * CbHYZ4(2,3,2,1,15)
|
|
$ + b16 * CbHYZ4(2,3,2,1,16)
|
|
$ + b17 * CbHYZ4(2,3,2,1,17)
|
|
$ + b18 * CbHYZ4(2,3,2,1,18)
|
|
$ + b19 * CbHYZ4(2,3,2,1,19)
|
|
HYZ4(3,0,2,1) = HYZ4(3,0,2,1)
|
|
$ + b01 * CbHYZ4(3,0,2,1,01)
|
|
$ + b02 * CbHYZ4(3,0,2,1,02)
|
|
$ + b03 * CbHYZ4(3,0,2,1,03)
|
|
$ + b04 * CbHYZ4(3,0,2,1,04)
|
|
$ + b05 * CbHYZ4(3,0,2,1,05)
|
|
$ + b06 * CbHYZ4(3,0,2,1,06)
|
|
$ + b07 * CbHYZ4(3,0,2,1,07)
|
|
$ + b08 * CbHYZ4(3,0,2,1,08)
|
|
$ + b09 * CbHYZ4(3,0,2,1,09)
|
|
$ + b10 * CbHYZ4(3,0,2,1,10)
|
|
$ + b11 * CbHYZ4(3,0,2,1,11)
|
|
$ + b12 * CbHYZ4(3,0,2,1,12)
|
|
$ + b13 * CbHYZ4(3,0,2,1,13)
|
|
$ + b14 * CbHYZ4(3,0,2,1,14)
|
|
$ + b15 * CbHYZ4(3,0,2,1,15)
|
|
$ + b16 * CbHYZ4(3,0,2,1,16)
|
|
$ + b17 * CbHYZ4(3,0,2,1,17)
|
|
$ + b18 * CbHYZ4(3,0,2,1,18)
|
|
$ + b19 * CbHYZ4(3,0,2,1,19)
|
|
HYZ4(3,1,2,1) = HYZ4(3,1,2,1)
|
|
$ + b01 * CbHYZ4(3,1,2,1,01)
|
|
$ + b02 * CbHYZ4(3,1,2,1,02)
|
|
$ + b03 * CbHYZ4(3,1,2,1,03)
|
|
$ + b04 * CbHYZ4(3,1,2,1,04)
|
|
$ + b05 * CbHYZ4(3,1,2,1,05)
|
|
$ + b06 * CbHYZ4(3,1,2,1,06)
|
|
$ + b07 * CbHYZ4(3,1,2,1,07)
|
|
$ + b08 * CbHYZ4(3,1,2,1,08)
|
|
$ + b09 * CbHYZ4(3,1,2,1,09)
|
|
$ + b10 * CbHYZ4(3,1,2,1,10)
|
|
$ + b11 * CbHYZ4(3,1,2,1,11)
|
|
$ + b12 * CbHYZ4(3,1,2,1,12)
|
|
$ + b13 * CbHYZ4(3,1,2,1,13)
|
|
$ + b14 * CbHYZ4(3,1,2,1,14)
|
|
$ + b15 * CbHYZ4(3,1,2,1,15)
|
|
$ + b16 * CbHYZ4(3,1,2,1,16)
|
|
$ + b17 * CbHYZ4(3,1,2,1,17)
|
|
$ + b18 * CbHYZ4(3,1,2,1,18)
|
|
$ + b19 * CbHYZ4(3,1,2,1,19)
|
|
$ + b20 * CbHYZ4(3,1,2,1,20)
|
|
$ + b21 * CbHYZ4(3,1,2,1,21)
|
|
$ + b22 * CbHYZ4(3,1,2,1,22)
|
|
HYZ4(3,2,0,1) = HYZ4(3,2,0,1)
|
|
$ + b01 * CbHYZ4(3,2,0,1,01)
|
|
$ + b02 * CbHYZ4(3,2,0,1,02)
|
|
$ + b03 * CbHYZ4(3,2,0,1,03)
|
|
$ + b04 * CbHYZ4(3,2,0,1,04)
|
|
$ + b05 * CbHYZ4(3,2,0,1,05)
|
|
$ + b06 * CbHYZ4(3,2,0,1,06)
|
|
$ + b07 * CbHYZ4(3,2,0,1,07)
|
|
$ + b08 * CbHYZ4(3,2,0,1,08)
|
|
$ + b09 * CbHYZ4(3,2,0,1,09)
|
|
$ + b10 * CbHYZ4(3,2,0,1,10)
|
|
$ + b11 * CbHYZ4(3,2,0,1,11)
|
|
$ + b12 * CbHYZ4(3,2,0,1,12)
|
|
$ + b13 * CbHYZ4(3,2,0,1,13)
|
|
$ + b14 * CbHYZ4(3,2,0,1,14)
|
|
$ + b15 * CbHYZ4(3,2,0,1,15)
|
|
$ + b16 * CbHYZ4(3,2,0,1,16)
|
|
$ + b17 * CbHYZ4(3,2,0,1,17)
|
|
$ + b18 * CbHYZ4(3,2,0,1,18)
|
|
$ + b19 * CbHYZ4(3,2,0,1,19)
|
|
HYZ4(3,2,1,1) = HYZ4(3,2,1,1)
|
|
$ + b01 * CbHYZ4(3,2,1,1,01)
|
|
$ + b02 * CbHYZ4(3,2,1,1,02)
|
|
$ + b03 * CbHYZ4(3,2,1,1,03)
|
|
$ + b04 * CbHYZ4(3,2,1,1,04)
|
|
$ + b05 * CbHYZ4(3,2,1,1,05)
|
|
$ + b06 * CbHYZ4(3,2,1,1,06)
|
|
$ + b07 * CbHYZ4(3,2,1,1,07)
|
|
$ + b08 * CbHYZ4(3,2,1,1,08)
|
|
$ + b09 * CbHYZ4(3,2,1,1,09)
|
|
$ + b10 * CbHYZ4(3,2,1,1,10)
|
|
$ + b11 * CbHYZ4(3,2,1,1,11)
|
|
$ + b12 * CbHYZ4(3,2,1,1,12)
|
|
$ + b13 * CbHYZ4(3,2,1,1,13)
|
|
$ + b14 * CbHYZ4(3,2,1,1,14)
|
|
$ + b15 * CbHYZ4(3,2,1,1,15)
|
|
$ + b16 * CbHYZ4(3,2,1,1,16)
|
|
$ + b17 * CbHYZ4(3,2,1,1,17)
|
|
$ + b18 * CbHYZ4(3,2,1,1,18)
|
|
$ + b19 * CbHYZ4(3,2,1,1,19)
|
|
$ + b20 * CbHYZ4(3,2,1,1,20)
|
|
$ + b21 * CbHYZ4(3,2,1,1,21)
|
|
HYZ4(3,2,2,1) = HYZ4(3,2,2,1)
|
|
$ + b01 * CbHYZ4(3,2,2,1,01)
|
|
$ + b02 * CbHYZ4(3,2,2,1,02)
|
|
$ + b03 * CbHYZ4(3,2,2,1,03)
|
|
$ + b04 * CbHYZ4(3,2,2,1,04)
|
|
$ + b05 * CbHYZ4(3,2,2,1,05)
|
|
$ + b06 * CbHYZ4(3,2,2,1,06)
|
|
$ + b07 * CbHYZ4(3,2,2,1,07)
|
|
$ + b08 * CbHYZ4(3,2,2,1,08)
|
|
$ + b09 * CbHYZ4(3,2,2,1,09)
|
|
$ + b10 * CbHYZ4(3,2,2,1,10)
|
|
$ + b11 * CbHYZ4(3,2,2,1,11)
|
|
$ + b12 * CbHYZ4(3,2,2,1,12)
|
|
$ + b13 * CbHYZ4(3,2,2,1,13)
|
|
$ + b14 * CbHYZ4(3,2,2,1,14)
|
|
$ + b15 * CbHYZ4(3,2,2,1,15)
|
|
$ + b16 * CbHYZ4(3,2,2,1,16)
|
|
$ + b17 * CbHYZ4(3,2,2,1,17)
|
|
$ + b18 * CbHYZ4(3,2,2,1,18)
|
|
$ + b19 * CbHYZ4(3,2,2,1,19)
|
|
HYZ4(3,2,3,1) = HYZ4(3,2,3,1)
|
|
$ + b01 * CbHYZ4(3,2,3,1,01)
|
|
$ + b02 * CbHYZ4(3,2,3,1,02)
|
|
$ + b03 * CbHYZ4(3,2,3,1,03)
|
|
$ + b04 * CbHYZ4(3,2,3,1,04)
|
|
$ + b05 * CbHYZ4(3,2,3,1,05)
|
|
$ + b06 * CbHYZ4(3,2,3,1,06)
|
|
$ + b07 * CbHYZ4(3,2,3,1,07)
|
|
$ + b08 * CbHYZ4(3,2,3,1,08)
|
|
$ + b09 * CbHYZ4(3,2,3,1,09)
|
|
$ + b10 * CbHYZ4(3,2,3,1,10)
|
|
$ + b11 * CbHYZ4(3,2,3,1,11)
|
|
$ + b12 * CbHYZ4(3,2,3,1,12)
|
|
$ + b13 * CbHYZ4(3,2,3,1,13)
|
|
$ + b14 * CbHYZ4(3,2,3,1,14)
|
|
$ + b15 * CbHYZ4(3,2,3,1,15)
|
|
$ + b16 * CbHYZ4(3,2,3,1,16)
|
|
$ + b17 * CbHYZ4(3,2,3,1,17)
|
|
$ + b18 * CbHYZ4(3,2,3,1,18)
|
|
$ + b19 * CbHYZ4(3,2,3,1,19)
|
|
HYZ4(3,3,2,1) = HYZ4(3,3,2,1)
|
|
$ + b01 * CbHYZ4(3,3,2,1,01)
|
|
$ + b02 * CbHYZ4(3,3,2,1,02)
|
|
$ + b03 * CbHYZ4(3,3,2,1,03)
|
|
$ + b04 * CbHYZ4(3,3,2,1,04)
|
|
$ + b05 * CbHYZ4(3,3,2,1,05)
|
|
$ + b06 * CbHYZ4(3,3,2,1,06)
|
|
$ + b07 * CbHYZ4(3,3,2,1,07)
|
|
$ + b08 * CbHYZ4(3,3,2,1,08)
|
|
$ + b09 * CbHYZ4(3,3,2,1,09)
|
|
$ + b10 * CbHYZ4(3,3,2,1,10)
|
|
$ + b11 * CbHYZ4(3,3,2,1,11)
|
|
$ + b12 * CbHYZ4(3,3,2,1,12)
|
|
$ + b13 * CbHYZ4(3,3,2,1,13)
|
|
$ + b14 * CbHYZ4(3,3,2,1,14)
|
|
$ + b15 * CbHYZ4(3,3,2,1,15)
|
|
$ + b16 * CbHYZ4(3,3,2,1,16)
|
|
$ + b17 * CbHYZ4(3,3,2,1,17)
|
|
$ + b18 * CbHYZ4(3,3,2,1,18)
|
|
$ + b19 * CbHYZ4(3,3,2,1,19)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
|
|
subroutine fillred2dhpl(iflag,n)
|
|
*********************************************************************
|
|
***** fillred2dhpl evaluates the reducible 2dhpl ******
|
|
***** irreducible 2dhpl need to be present in com_HPL2 already ******
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,n
|
|
real(dp):: HY1,HY2,HY3,HY4,HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
common /com_tdhpl_HPL2/
|
|
$ HY1(-1:1),HY2(-1:1,-1:1),HY3(-1:1,-1:1,-1:1),
|
|
$ HY4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1),
|
|
$ HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
!$omp threadprivate(/com_tdhpl_HPL2/)
|
|
|
|
* 2001-04-23:14:13:53.hpl
|
|
* <- red.out
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
if (n.eq.2) then
|
|
HYZ2(0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)
|
|
HYZ2(1,0) =
|
|
$ + HYZ1(0) *HYZ1(1)
|
|
$ - HYZ2(0,1)
|
|
HYZ2(1,1) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)
|
|
HYZ2(1,2) =
|
|
$ + HYZ1(1) *HYZ1(2)
|
|
$ - HYZ2(2,1)
|
|
HYZ2(1,3) =
|
|
$ + HYZ1(1) *HYZ1(3)
|
|
$ - HYZ2(3,1)
|
|
HYZ2(2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)
|
|
$ - HYZ2(0,2)
|
|
HYZ2(2,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)
|
|
HYZ2(2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)
|
|
$ - HYZ2(3,2)
|
|
HYZ2(3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)
|
|
$ - HYZ2(0,3)
|
|
HYZ2(3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)
|
|
endif
|
|
if (n.eq.2) return
|
|
|
|
if (n.eq.3) then
|
|
HYZ3(0,0,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(0)*HYZ1(0)
|
|
HYZ3(0,1,0) =
|
|
$ + HYZ1(0) *HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ3(0,0,1)
|
|
HYZ3(0,1,2) =
|
|
$ + HYZ1(2) *HYZ2(0,1)
|
|
$ - HYZ3(0,2,1)
|
|
$ - HYZ3(2,0,1)
|
|
HYZ3(0,1,3) =
|
|
$ + HYZ1(3) *HYZ2(0,1)
|
|
$ - HYZ3(0,3,1)
|
|
$ - HYZ3(3,0,1)
|
|
HYZ3(0,2,0) =
|
|
$ + HYZ1(0) *HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ3(0,0,2)
|
|
HYZ3(0,2,3) =
|
|
$ + HYZ1(3) *HYZ2(0,2)
|
|
$ - HYZ3(0,3,2)
|
|
$ - HYZ3(3,0,2)
|
|
HYZ3(0,3,0) =
|
|
$ + HYZ1(0) *HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ3(0,0,3)
|
|
HYZ3(1,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(1)
|
|
$ - HYZ1(0) *HYZ2(0,1)
|
|
$ + HYZ3(0,0,1)
|
|
HYZ3(1,0,1) =
|
|
$ + HYZ1(1) *HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ3(0,1,1)
|
|
HYZ3(1,0,2) =
|
|
$ + HYZ1(1) *HYZ2(0,2)
|
|
$ - HYZ1(2) *HYZ2(0,1)
|
|
$ + HYZ3(2,0,1)
|
|
HYZ3(1,0,3) =
|
|
$ + HYZ1(1) *HYZ2(0,3)
|
|
$ - HYZ1(3) *HYZ2(0,1)
|
|
$ + HYZ3(3,0,1)
|
|
HYZ3(1,1,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(1)*HYZ1(1)
|
|
$ - HYZ1(1) *HYZ2(0,1)
|
|
$ + HYZ3(0,1,1)
|
|
HYZ3(1,1,1) =
|
|
$ + 1.666666666666666d-01*HYZ1(1)*HYZ1(1)*HYZ1(1)
|
|
HYZ3(1,1,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ1(2)
|
|
$ - HYZ1(1) *HYZ2(2,1)
|
|
$ + HYZ3(2,1,1)
|
|
HYZ3(1,1,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ1(3)
|
|
$ - HYZ1(1) *HYZ2(3,1)
|
|
$ + HYZ3(3,1,1)
|
|
HYZ3(1,2,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ1(2)
|
|
$ - HYZ1(0) *HYZ2(2,1)
|
|
$ - HYZ1(1) *HYZ2(0,2)
|
|
$ + HYZ3(0,2,1)
|
|
HYZ3(1,2,1) =
|
|
$ + HYZ1(1) *HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ3(2,1,1)
|
|
HYZ3(1,2,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(2)*HYZ1(2)
|
|
$ - HYZ1(2) *HYZ2(2,1)
|
|
$ + HYZ3(2,2,1)
|
|
HYZ3(1,2,3) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(1) *HYZ2(3,2)
|
|
$ - HYZ1(3) *HYZ2(2,1)
|
|
$ + HYZ3(3,2,1)
|
|
HYZ3(1,3,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ2(3,1)
|
|
$ - HYZ1(1) *HYZ2(0,3)
|
|
$ + HYZ3(0,3,1)
|
|
HYZ3(1,3,1) =
|
|
$ + HYZ1(1) *HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ3(3,1,1)
|
|
HYZ3(1,3,2) =
|
|
$ + HYZ1(1) *HYZ2(3,2)
|
|
$ - HYZ1(2) *HYZ2(3,1)
|
|
$ + HYZ3(2,3,1)
|
|
HYZ3(1,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(3) *HYZ2(3,1)
|
|
$ + HYZ3(3,3,1)
|
|
HYZ3(2,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(2)
|
|
$ - HYZ1(0) *HYZ2(0,2)
|
|
$ + HYZ3(0,0,2)
|
|
HYZ3(2,0,2) =
|
|
$ + HYZ1(2) *HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ3(0,2,2)
|
|
HYZ3(2,0,3) =
|
|
$ + HYZ1(2) *HYZ2(0,3)
|
|
$ - HYZ1(3) *HYZ2(0,2)
|
|
$ + HYZ3(3,0,2)
|
|
HYZ3(2,1,0) =
|
|
$ + HYZ1(0) *HYZ2(2,1)
|
|
$ - HYZ3(0,2,1)
|
|
$ - HYZ3(2,0,1)
|
|
HYZ3(2,1,2) =
|
|
$ + HYZ1(2) *HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ3(2,2,1)
|
|
HYZ3(2,1,3) =
|
|
$ + HYZ1(3) *HYZ2(2,1)
|
|
$ - HYZ3(2,3,1)
|
|
$ - HYZ3(3,2,1)
|
|
HYZ3(2,2,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(2)*HYZ1(2)
|
|
$ - HYZ1(2) *HYZ2(0,2)
|
|
$ + HYZ3(0,2,2)
|
|
HYZ3(2,2,2) =
|
|
$ + 1.666666666666666d-01*HYZ1(2)*HYZ1(2)*HYZ1(2)
|
|
HYZ3(2,2,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(2) *HYZ2(3,2)
|
|
$ + HYZ3(3,2,2)
|
|
HYZ3(2,3,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ2(3,2)
|
|
$ - HYZ1(2) *HYZ2(0,3)
|
|
$ + HYZ3(0,3,2)
|
|
HYZ3(2,3,2) =
|
|
$ + HYZ1(2) *HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ3(3,2,2)
|
|
HYZ3(2,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(3) *HYZ2(3,2)
|
|
$ + HYZ3(3,3,2)
|
|
HYZ3(3,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ2(0,3)
|
|
$ + HYZ3(0,0,3)
|
|
HYZ3(3,0,3) =
|
|
$ + HYZ1(3) *HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ3(0,3,3)
|
|
HYZ3(3,1,0) =
|
|
$ + HYZ1(0) *HYZ2(3,1)
|
|
$ - HYZ3(0,3,1)
|
|
$ - HYZ3(3,0,1)
|
|
HYZ3(3,1,2) =
|
|
$ + HYZ1(2) *HYZ2(3,1)
|
|
$ - HYZ3(2,3,1)
|
|
$ - HYZ3(3,2,1)
|
|
HYZ3(3,1,3) =
|
|
$ + HYZ1(3) *HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ3(3,3,1)
|
|
HYZ3(3,2,0) =
|
|
$ + HYZ1(0) *HYZ2(3,2)
|
|
$ - HYZ3(0,3,2)
|
|
$ - HYZ3(3,0,2)
|
|
HYZ3(3,2,3) =
|
|
$ + HYZ1(3) *HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ3(3,3,2)
|
|
HYZ3(3,3,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(3) *HYZ2(0,3)
|
|
$ + HYZ3(0,3,3)
|
|
HYZ3(3,3,3) =
|
|
$ + 1.666666666666666d-01*HYZ1(3)*HYZ1(3)*HYZ1(3)
|
|
endif
|
|
if (n.eq.3) return
|
|
|
|
if (n.eq.4) then
|
|
HYZ4(0,0,0,0) =
|
|
$ + 4.166666666666666d-02*HYZ1(0)*HYZ1(0)*HYZ1(0)*HYZ1(0)
|
|
HYZ4(0,0,1,0) =
|
|
$ + HYZ1(0) *HYZ3(0,0,1)
|
|
$ - 3.000000000000000d+00*HYZ4(0,0,0,1)
|
|
HYZ4(0,0,1,2) =
|
|
$ + HYZ1(2) *HYZ3(0,0,1)
|
|
$ - HYZ4(0,0,2,1)
|
|
$ - HYZ4(0,2,0,1)
|
|
$ - HYZ4(2,0,0,1)
|
|
HYZ4(0,0,1,3) =
|
|
$ + HYZ1(3) *HYZ3(0,0,1)
|
|
$ - HYZ4(0,0,3,1)
|
|
$ - HYZ4(0,3,0,1)
|
|
$ - HYZ4(3,0,0,1)
|
|
HYZ4(0,0,2,0) =
|
|
$ + HYZ1(0) *HYZ3(0,0,2)
|
|
$ - 3.000000000000000d+00*HYZ4(0,0,0,2)
|
|
HYZ4(0,0,2,3) =
|
|
$ + HYZ1(3) *HYZ3(0,0,2)
|
|
$ - HYZ4(0,0,3,2)
|
|
$ - HYZ4(0,3,0,2)
|
|
$ - HYZ4(3,0,0,2)
|
|
HYZ4(0,0,3,0) =
|
|
$ + HYZ1(0) *HYZ3(0,0,3)
|
|
$ - 3.000000000000000d+00*HYZ4(0,0,0,3)
|
|
HYZ4(0,1,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,0,1)
|
|
$ + 3.000000000000000d+00*HYZ4(0,0,0,1)
|
|
HYZ4(0,1,0,1) =
|
|
$ + 5.000000000000000d-01*HYZ2(0,1)*HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,1,1)
|
|
HYZ4(0,1,0,2) =
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(0,2)
|
|
$ + HYZ4(0,2,0,1)
|
|
$ + 2.000000000000000d+00*HYZ4(2,0,0,1)
|
|
HYZ4(0,1,0,3) =
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(0,3)
|
|
$ + HYZ4(0,3,0,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,0,0,1)
|
|
HYZ4(0,1,1,0) =
|
|
$ + HYZ1(0) *HYZ3(0,1,1)
|
|
$ - 5.000000000000000d-01*HYZ2(0,1)*HYZ2(0,1)
|
|
HYZ4(0,1,1,2) =
|
|
$ + HYZ1(2) *HYZ3(0,1,1)
|
|
$ - HYZ4(0,1,2,1)
|
|
$ - HYZ4(0,2,1,1)
|
|
$ - HYZ4(2,0,1,1)
|
|
HYZ4(0,1,1,3) =
|
|
$ + HYZ1(3) *HYZ3(0,1,1)
|
|
$ - HYZ4(0,1,3,1)
|
|
$ - HYZ4(0,3,1,1)
|
|
$ - HYZ4(3,0,1,1)
|
|
HYZ4(0,1,2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(0,1)
|
|
$ - HYZ1(0) *HYZ3(0,2,1)
|
|
$ - HYZ1(0) *HYZ3(2,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(0,2)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,2,1)
|
|
$ + HYZ4(0,2,0,1)
|
|
HYZ4(0,1,2,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,1)
|
|
$ - HYZ1(2) *HYZ3(0,2,1)
|
|
$ - HYZ1(2) *HYZ3(2,0,1)
|
|
$ + HYZ4(0,2,2,1)
|
|
$ + HYZ4(2,0,2,1)
|
|
$ + HYZ4(2,2,0,1)
|
|
HYZ4(0,1,2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(0,1)
|
|
$ - HYZ1(3) *HYZ3(0,2,1)
|
|
$ - HYZ1(3) *HYZ3(2,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(3,2)
|
|
$ + HYZ4(0,3,2,1)
|
|
$ + HYZ4(3,0,2,1)
|
|
$ + HYZ4(3,2,0,1)
|
|
HYZ4(0,1,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(0,1)
|
|
$ - HYZ1(0) *HYZ3(0,3,1)
|
|
$ - HYZ1(0) *HYZ3(3,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(0,3)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,3,1)
|
|
$ + HYZ4(0,3,0,1)
|
|
HYZ4(0,1,3,2) =
|
|
$ - HYZ1(2) *HYZ3(0,3,1)
|
|
$ - HYZ1(2) *HYZ3(3,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(3,2)
|
|
$ + HYZ4(0,2,3,1)
|
|
$ + HYZ4(2,0,3,1)
|
|
$ + HYZ4(2,3,0,1)
|
|
HYZ4(0,1,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,1)
|
|
$ - HYZ1(3) *HYZ3(0,3,1)
|
|
$ - HYZ1(3) *HYZ3(3,0,1)
|
|
$ + HYZ4(0,3,3,1)
|
|
$ + HYZ4(3,0,3,1)
|
|
$ + HYZ4(3,3,0,1)
|
|
HYZ4(0,2,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,0,2)
|
|
$ + 3.000000000000000d+00*HYZ4(0,0,0,2)
|
|
HYZ4(0,2,0,2) =
|
|
$ + 5.000000000000000d-01*HYZ2(0,2)*HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,2,2)
|
|
HYZ4(0,2,0,3) =
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,0,2)
|
|
$ + HYZ2(0,2) *HYZ2(0,3)
|
|
$ + HYZ4(0,3,0,2)
|
|
$ + 2.000000000000000d+00*HYZ4(3,0,0,2)
|
|
HYZ4(0,2,1,0) =
|
|
$ + HYZ1(0) *HYZ3(0,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,2,1)
|
|
$ - HYZ4(0,2,0,1)
|
|
HYZ4(0,2,1,2) =
|
|
$ + HYZ1(2) *HYZ3(0,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,2,2,1)
|
|
$ - HYZ4(2,0,2,1)
|
|
HYZ4(0,2,1,3) =
|
|
$ + HYZ1(3) *HYZ3(0,2,1)
|
|
$ - HYZ4(0,2,3,1)
|
|
$ - HYZ4(0,3,2,1)
|
|
$ - HYZ4(3,0,2,1)
|
|
HYZ4(0,2,2,0) =
|
|
$ + HYZ1(0) *HYZ3(0,2,2)
|
|
$ - 5.000000000000000d-01*HYZ2(0,2)*HYZ2(0,2)
|
|
HYZ4(0,2,2,3) =
|
|
$ + HYZ1(3) *HYZ3(0,2,2)
|
|
$ - HYZ4(0,2,3,2)
|
|
$ - HYZ4(0,3,2,2)
|
|
$ - HYZ4(3,0,2,2)
|
|
HYZ4(0,2,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(0,2)
|
|
$ - HYZ1(0) *HYZ3(0,3,2)
|
|
$ - HYZ1(0) *HYZ3(3,0,2)
|
|
$ - HYZ2(0,2) *HYZ2(0,3)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,3,2)
|
|
$ + HYZ4(0,3,0,2)
|
|
HYZ4(0,2,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,2)
|
|
$ - HYZ1(3) *HYZ3(0,3,2)
|
|
$ - HYZ1(3) *HYZ3(3,0,2)
|
|
$ + HYZ4(0,3,3,2)
|
|
$ + HYZ4(3,0,3,2)
|
|
$ + HYZ4(3,3,0,2)
|
|
HYZ4(0,3,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,0,3)
|
|
$ + 3.000000000000000d+00*HYZ4(0,0,0,3)
|
|
HYZ4(0,3,0,3) =
|
|
$ + 5.000000000000000d-01*HYZ2(0,3)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,3,3)
|
|
HYZ4(0,3,1,0) =
|
|
$ + HYZ1(0) *HYZ3(0,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,3,1)
|
|
$ - HYZ4(0,3,0,1)
|
|
HYZ4(0,3,1,2) =
|
|
$ + HYZ1(2) *HYZ3(0,3,1)
|
|
$ - HYZ4(0,2,3,1)
|
|
$ - HYZ4(0,3,2,1)
|
|
$ - HYZ4(2,0,3,1)
|
|
HYZ4(0,3,1,3) =
|
|
$ + HYZ1(3) *HYZ3(0,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,3,1)
|
|
$ - HYZ4(3,0,3,1)
|
|
HYZ4(0,3,2,0) =
|
|
$ + HYZ1(0) *HYZ3(0,3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(0,0,3,2)
|
|
$ - HYZ4(0,3,0,2)
|
|
HYZ4(0,3,2,3) =
|
|
$ + HYZ1(3) *HYZ3(0,3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,3,2)
|
|
$ - HYZ4(3,0,3,2)
|
|
HYZ4(0,3,3,0) =
|
|
$ + HYZ1(0) *HYZ3(0,3,3)
|
|
$ - 5.000000000000000d-01*HYZ2(0,3)*HYZ2(0,3)
|
|
HYZ4(1,0,0,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(0)*HYZ1(0)*HYZ1(1)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,1)
|
|
$ + HYZ1(0) *HYZ3(0,0,1)
|
|
$ - HYZ4(0,0,0,1)
|
|
HYZ4(1,0,0,1) =
|
|
$ + HYZ1(1) *HYZ3(0,0,1)
|
|
$ - 5.000000000000000d-01*HYZ2(0,1)*HYZ2(0,1)
|
|
HYZ4(1,0,0,2) =
|
|
$ + HYZ1(1) *HYZ3(0,0,2)
|
|
$ + HYZ1(2) *HYZ3(0,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(0,2)
|
|
$ - HYZ4(2,0,0,1)
|
|
HYZ4(1,0,0,3) =
|
|
$ + HYZ1(1) *HYZ3(0,0,3)
|
|
$ + HYZ1(3) *HYZ3(0,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(0,3)
|
|
$ - HYZ4(3,0,0,1)
|
|
HYZ4(1,0,1,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,1,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,0,1)
|
|
$ + 5.000000000000000d-01*HYZ2(0,1)*HYZ2(0,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,1,1)
|
|
HYZ4(1,0,1,1) =
|
|
$ + HYZ1(1) *HYZ3(0,1,1)
|
|
$ - 3.000000000000000d+00*HYZ4(0,1,1,1)
|
|
HYZ4(1,0,1,2) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(0,1)
|
|
$ - HYZ1(1) *HYZ3(0,2,1)
|
|
$ - HYZ1(1) *HYZ3(2,0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,1,1)
|
|
$ + HYZ4(0,1,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,2,1,1)
|
|
$ + 2.000000000000000d+00*HYZ4(2,0,1,1)
|
|
HYZ4(1,0,1,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(0,1)
|
|
$ - HYZ1(1) *HYZ3(0,3,1)
|
|
$ - HYZ1(1) *HYZ3(3,0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,1,1)
|
|
$ + HYZ4(0,1,3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,1,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,0,1,1)
|
|
HYZ4(1,0,2,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(0,2)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(0,1)
|
|
$ + HYZ1(0) *HYZ3(2,0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,0,2)
|
|
$ + HYZ2(0,1) *HYZ2(0,2)
|
|
$ - HYZ4(0,2,0,1)
|
|
HYZ4(1,0,2,1) =
|
|
$ + HYZ1(1) *HYZ3(0,2,1)
|
|
$ - HYZ4(0,1,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,2,1,1)
|
|
HYZ4(1,0,2,2) =
|
|
$ + HYZ1(1) *HYZ3(0,2,2)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,1)
|
|
$ + HYZ1(2) *HYZ3(2,0,1)
|
|
$ - HYZ4(2,2,0,1)
|
|
HYZ4(1,0,2,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(0,2)
|
|
$ - HYZ1(1) *HYZ3(0,3,2)
|
|
$ - HYZ1(1) *HYZ3(3,0,2)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(0,1)
|
|
$ + HYZ1(3) *HYZ3(2,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(3,2)
|
|
$ - HYZ4(3,2,0,1)
|
|
HYZ4(1,0,3,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(0,3)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(0,1)
|
|
$ + HYZ1(0) *HYZ3(3,0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,0,3)
|
|
$ + HYZ2(0,1) *HYZ2(0,3)
|
|
$ - HYZ4(0,3,0,1)
|
|
HYZ4(1,0,3,1) =
|
|
$ + HYZ1(1) *HYZ3(0,3,1)
|
|
$ - HYZ4(0,1,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,1,1)
|
|
HYZ4(1,0,3,2) =
|
|
$ + HYZ1(1) *HYZ3(0,3,2)
|
|
$ + HYZ1(2) *HYZ3(3,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(3,2)
|
|
$ - HYZ4(2,3,0,1)
|
|
HYZ4(1,0,3,3) =
|
|
$ + HYZ1(1) *HYZ3(0,3,3)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,1)
|
|
$ + HYZ1(3) *HYZ3(3,0,1)
|
|
$ - HYZ4(3,3,0,1)
|
|
HYZ4(1,1,0,0) =
|
|
$ + 2.500000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(1)*HYZ1(1)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(0,1)
|
|
$ + HYZ1(0) *HYZ3(0,1,1)
|
|
$ + HYZ1(1) *HYZ3(0,0,1)
|
|
$ - HYZ4(0,0,1,1)
|
|
HYZ4(1,1,0,1) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,1,1)
|
|
$ + 3.000000000000000d+00*HYZ4(0,1,1,1)
|
|
HYZ4(1,1,0,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,2)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(0,1)
|
|
$ + HYZ1(1) *HYZ3(2,0,1)
|
|
$ + HYZ1(2) *HYZ3(0,1,1)
|
|
$ - HYZ4(2,0,1,1)
|
|
HYZ4(1,1,0,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,3)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(0,1)
|
|
$ + HYZ1(1) *HYZ3(3,0,1)
|
|
$ + HYZ1(3) *HYZ3(0,1,1)
|
|
$ - HYZ4(3,0,1,1)
|
|
HYZ4(1,1,1,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(1)*HYZ1(1)*HYZ1(1)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,1)
|
|
$ + HYZ1(1) *HYZ3(0,1,1)
|
|
$ - HYZ4(0,1,1,1)
|
|
HYZ4(1,1,1,1) =
|
|
$ + 4.166666666666666d-02*HYZ1(1)*HYZ1(1)*HYZ1(1)*HYZ1(1)
|
|
HYZ4(1,1,1,2) =
|
|
$ + 1.666666666666666d-01*HYZ1(1)*HYZ1(1)*HYZ1(1)*HYZ1(2)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(2,1)
|
|
$ + HYZ1(1) *HYZ3(2,1,1)
|
|
$ - HYZ4(2,1,1,1)
|
|
HYZ4(1,1,1,3) =
|
|
$ + 1.666666666666666d-01*HYZ1(1)*HYZ1(1)*HYZ1(1)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(3,1)
|
|
$ + HYZ1(1) *HYZ3(3,1,1)
|
|
$ - HYZ4(3,1,1,1)
|
|
HYZ4(1,1,2,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(1)*HYZ1(1)*HYZ1(2)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(2,1)
|
|
$ + HYZ1(0) *HYZ3(2,1,1)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,2)
|
|
$ + HYZ1(1) *HYZ3(0,2,1)
|
|
$ - HYZ4(0,2,1,1)
|
|
HYZ4(1,1,2,1) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(2,1,1)
|
|
$ + 3.000000000000000d+00*HYZ4(2,1,1,1)
|
|
HYZ4(1,1,2,2) =
|
|
$ + 2.500000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ1(2)*HYZ1(2)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(2,1)
|
|
$ + HYZ1(1) *HYZ3(2,2,1)
|
|
$ + HYZ1(2) *HYZ3(2,1,1)
|
|
$ - HYZ4(2,2,1,1)
|
|
HYZ4(1,1,2,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ1(2)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(3,2)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(2,1)
|
|
$ + HYZ1(1) *HYZ3(3,2,1)
|
|
$ + HYZ1(3) *HYZ3(2,1,1)
|
|
$ - HYZ4(3,2,1,1)
|
|
HYZ4(1,1,3,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(1)*HYZ1(1)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(3,1)
|
|
$ + HYZ1(0) *HYZ3(3,1,1)
|
|
$ - 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(0,3)
|
|
$ + HYZ1(1) *HYZ3(0,3,1)
|
|
$ - HYZ4(0,3,1,1)
|
|
HYZ4(1,1,3,1) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(3,1,1)
|
|
$ + 3.000000000000000d+00*HYZ4(3,1,1,1)
|
|
HYZ4(1,1,3,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ2(3,2)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(3,1)
|
|
$ + HYZ1(1) *HYZ3(2,3,1)
|
|
$ + HYZ1(2) *HYZ3(3,1,1)
|
|
$ - HYZ4(2,3,1,1)
|
|
HYZ4(1,1,3,3) =
|
|
$ + 2.500000000000000d-01*HYZ1(1)*HYZ1(1)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(3,1)
|
|
$ + HYZ1(1) *HYZ3(3,3,1)
|
|
$ + HYZ1(3) *HYZ3(3,1,1)
|
|
$ - HYZ4(3,3,1,1)
|
|
HYZ4(1,2,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(1)*HYZ1(2)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(2,1)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(0,2)
|
|
$ + HYZ1(0) *HYZ3(0,2,1)
|
|
$ + HYZ1(1) *HYZ3(0,0,2)
|
|
$ - HYZ4(0,0,2,1)
|
|
HYZ4(1,2,0,1) =
|
|
$ + HYZ1(1) *HYZ3(2,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(2,1)
|
|
$ + HYZ4(0,1,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,2,1,1)
|
|
HYZ4(1,2,0,2) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,2,2)
|
|
$ + HYZ1(2) *HYZ3(0,2,1)
|
|
$ - HYZ2(0,2) *HYZ2(2,1)
|
|
$ - HYZ4(2,0,2,1)
|
|
HYZ4(1,2,0,3) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(0,3)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(0,2)
|
|
$ + HYZ1(1) *HYZ3(3,0,2)
|
|
$ + HYZ1(3) *HYZ3(0,2,1)
|
|
$ - HYZ2(0,3) *HYZ2(2,1)
|
|
$ - HYZ4(3,0,2,1)
|
|
HYZ4(1,2,1,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(2,1,1)
|
|
$ - HYZ1(1) *HYZ3(0,2,1)
|
|
$ - HYZ1(1) *HYZ3(2,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(2,1)
|
|
$ - HYZ4(0,1,2,1)
|
|
HYZ4(1,2,1,1) =
|
|
$ + HYZ1(1) *HYZ3(2,1,1)
|
|
$ - 3.000000000000000d+00*HYZ4(2,1,1,1)
|
|
HYZ4(1,2,1,2) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(2,2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(2,1,1)
|
|
$ + 5.000000000000000d-01*HYZ2(2,1)*HYZ2(2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(2,2,1,1)
|
|
HYZ4(1,2,1,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(2,1)
|
|
$ - HYZ1(1) *HYZ3(2,3,1)
|
|
$ - HYZ1(1) *HYZ3(3,2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(2,1,1)
|
|
$ + HYZ2(2,1) *HYZ2(3,1)
|
|
$ - HYZ4(3,1,2,1)
|
|
HYZ4(1,2,2,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(1)*HYZ1(2)*HYZ1(2)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(2,1)
|
|
$ + HYZ1(0) *HYZ3(2,2,1)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(0,2)
|
|
$ + HYZ1(1) *HYZ3(0,2,2)
|
|
$ + HYZ2(0,2) *HYZ2(2,1)
|
|
$ - HYZ4(0,2,2,1)
|
|
HYZ4(1,2,2,1) =
|
|
$ + HYZ1(1) *HYZ3(2,2,1)
|
|
$ - 5.000000000000000d-01*HYZ2(2,1)*HYZ2(2,1)
|
|
HYZ4(1,2,2,2) =
|
|
$ + 1.666666666666666d-01*HYZ1(1)*HYZ1(2)*HYZ1(2)*HYZ1(2)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(2,1)
|
|
$ + HYZ1(2) *HYZ3(2,2,1)
|
|
$ - HYZ4(2,2,2,1)
|
|
HYZ4(1,2,2,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(2)*HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(3,2)
|
|
$ + HYZ1(1) *HYZ3(3,2,2)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(2,1)
|
|
$ + HYZ1(3) *HYZ3(2,2,1)
|
|
$ + HYZ2(2,1) *HYZ2(3,2)
|
|
$ - HYZ4(3,2,2,1)
|
|
HYZ4(1,2,3,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(3,2)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(2,1)
|
|
$ + HYZ1(0) *HYZ3(3,2,1)
|
|
$ - HYZ1(1) *HYZ1(2)*HYZ2(0,3)
|
|
$ + HYZ1(1) *HYZ3(0,3,2)
|
|
$ + HYZ2(0,3) *HYZ2(2,1)
|
|
$ - HYZ4(0,3,2,1)
|
|
HYZ4(1,2,3,1) =
|
|
$ + HYZ1(1) *HYZ3(2,3,1)
|
|
$ - HYZ2(2,1) *HYZ2(3,1)
|
|
$ + HYZ4(3,1,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,2,1,1)
|
|
HYZ4(1,2,3,2) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(3,2,2)
|
|
$ + HYZ1(2) *HYZ3(3,2,1)
|
|
$ - HYZ2(2,1) *HYZ2(3,2)
|
|
$ - HYZ4(2,3,2,1)
|
|
HYZ4(1,2,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(1)*HYZ1(2)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(3,2)
|
|
$ + HYZ1(1) *HYZ3(3,3,2)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(2,1)
|
|
$ + HYZ1(3) *HYZ3(3,2,1)
|
|
$ - HYZ4(3,3,2,1)
|
|
HYZ4(1,3,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(1)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(3,1)
|
|
$ - HYZ1(0) *HYZ1(1)*HYZ2(0,3)
|
|
$ + HYZ1(0) *HYZ3(0,3,1)
|
|
$ + HYZ1(1) *HYZ3(0,0,3)
|
|
$ - HYZ4(0,0,3,1)
|
|
HYZ4(1,3,0,1) =
|
|
$ + HYZ1(1) *HYZ3(3,0,1)
|
|
$ - HYZ2(0,1) *HYZ2(3,1)
|
|
$ + HYZ4(0,1,3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,1,1)
|
|
HYZ4(1,3,0,2) =
|
|
$ + HYZ1(1) *HYZ3(3,0,2)
|
|
$ + HYZ1(2) *HYZ3(0,3,1)
|
|
$ - HYZ2(0,2) *HYZ2(3,1)
|
|
$ - HYZ4(2,0,3,1)
|
|
HYZ4(1,3,0,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(0,3,3)
|
|
$ + HYZ1(3) *HYZ3(0,3,1)
|
|
$ - HYZ2(0,3) *HYZ2(3,1)
|
|
$ - HYZ4(3,0,3,1)
|
|
HYZ4(1,3,1,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(3,1,1)
|
|
$ - HYZ1(1) *HYZ3(0,3,1)
|
|
$ - HYZ1(1) *HYZ3(3,0,1)
|
|
$ + HYZ2(0,1) *HYZ2(3,1)
|
|
$ - HYZ4(0,1,3,1)
|
|
HYZ4(1,3,1,1) =
|
|
$ + HYZ1(1) *HYZ3(3,1,1)
|
|
$ - 3.000000000000000d+00*HYZ4(3,1,1,1)
|
|
HYZ4(1,3,1,2) =
|
|
$ + HYZ1(1) *HYZ1(2)*HYZ2(3,1)
|
|
$ - HYZ1(1) *HYZ3(2,3,1)
|
|
$ - HYZ1(1) *HYZ3(3,2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(3,1,1)
|
|
$ + 2.000000000000000d+00*HYZ4(2,3,1,1)
|
|
$ + HYZ4(3,1,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,2,1,1)
|
|
HYZ4(1,3,1,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(3,3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(3,1,1)
|
|
$ + 5.000000000000000d-01*HYZ2(3,1)*HYZ2(3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,3,1,1)
|
|
HYZ4(1,3,2,0) =
|
|
$ + HYZ1(0) *HYZ1(1)*HYZ2(3,2)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(3,1)
|
|
$ + HYZ1(0) *HYZ3(2,3,1)
|
|
$ - HYZ1(1) *HYZ3(0,3,2)
|
|
$ - HYZ1(1) *HYZ3(3,0,2)
|
|
$ + HYZ2(0,2) *HYZ2(3,1)
|
|
$ - HYZ4(0,2,3,1)
|
|
HYZ4(1,3,2,1) =
|
|
$ + HYZ1(1) *HYZ3(3,2,1)
|
|
$ - HYZ4(3,1,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,2,1,1)
|
|
HYZ4(1,3,2,2) =
|
|
$ + HYZ1(1) *HYZ3(3,2,2)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(3,1)
|
|
$ + HYZ1(2) *HYZ3(2,3,1)
|
|
$ - HYZ4(2,2,3,1)
|
|
HYZ4(1,3,2,3) =
|
|
$ + HYZ1(1) *HYZ1(3)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(1)*HYZ3(3,3,2)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(3,1)
|
|
$ + HYZ1(3) *HYZ3(2,3,1)
|
|
$ + HYZ2(3,1) *HYZ2(3,2)
|
|
$ - HYZ4(3,2,3,1)
|
|
HYZ4(1,3,3,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(1)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(3,1)
|
|
$ + HYZ1(0) *HYZ3(3,3,1)
|
|
$ - HYZ1(1) *HYZ1(3)*HYZ2(0,3)
|
|
$ + HYZ1(1) *HYZ3(0,3,3)
|
|
$ + HYZ2(0,3) *HYZ2(3,1)
|
|
$ - HYZ4(0,3,3,1)
|
|
HYZ4(1,3,3,1) =
|
|
$ + HYZ1(1) *HYZ3(3,3,1)
|
|
$ - 5.000000000000000d-01*HYZ2(3,1)*HYZ2(3,1)
|
|
HYZ4(1,3,3,2) =
|
|
$ + HYZ1(1) *HYZ3(3,3,2)
|
|
$ + HYZ1(2) *HYZ3(3,3,1)
|
|
$ - HYZ2(3,1) *HYZ2(3,2)
|
|
$ - HYZ4(2,3,3,1)
|
|
HYZ4(1,3,3,3) =
|
|
$ + 1.666666666666666d-01*HYZ1(1)*HYZ1(3)*HYZ1(3)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(3,1)
|
|
$ + HYZ1(3) *HYZ3(3,3,1)
|
|
$ - HYZ4(3,3,3,1)
|
|
HYZ4(2,0,0,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(0)*HYZ1(0)*HYZ1(2)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,2)
|
|
$ + HYZ1(0) *HYZ3(0,0,2)
|
|
$ - HYZ4(0,0,0,2)
|
|
HYZ4(2,0,0,2) =
|
|
$ + HYZ1(2) *HYZ3(0,0,2)
|
|
$ - 5.000000000000000d-01*HYZ2(0,2)*HYZ2(0,2)
|
|
HYZ4(2,0,0,3) =
|
|
$ + HYZ1(2) *HYZ3(0,0,3)
|
|
$ + HYZ1(3) *HYZ3(0,0,2)
|
|
$ - HYZ2(0,2) *HYZ2(0,3)
|
|
$ - HYZ4(3,0,0,2)
|
|
HYZ4(2,0,1,0) =
|
|
$ + HYZ1(0) *HYZ3(2,0,1)
|
|
$ - HYZ4(0,2,0,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,0,0,1)
|
|
HYZ4(2,0,1,2) =
|
|
$ + HYZ1(2) *HYZ3(2,0,1)
|
|
$ - HYZ4(2,0,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,2,0,1)
|
|
HYZ4(2,0,1,3) =
|
|
$ + HYZ1(3) *HYZ3(2,0,1)
|
|
$ - HYZ4(2,0,3,1)
|
|
$ - HYZ4(2,3,0,1)
|
|
$ - HYZ4(3,2,0,1)
|
|
HYZ4(2,0,2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,2,2)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,0,2)
|
|
$ + 5.000000000000000d-01*HYZ2(0,2)*HYZ2(0,2)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,2,2)
|
|
HYZ4(2,0,2,2) =
|
|
$ + HYZ1(2) *HYZ3(0,2,2)
|
|
$ - 3.000000000000000d+00*HYZ4(0,2,2,2)
|
|
HYZ4(2,0,2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(0,2)
|
|
$ - HYZ1(2) *HYZ3(0,3,2)
|
|
$ - HYZ1(2) *HYZ3(3,0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,2,2)
|
|
$ + HYZ4(0,2,3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,2,2)
|
|
$ + 2.000000000000000d+00*HYZ4(3,0,2,2)
|
|
HYZ4(2,0,3,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(0,3)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(0,2)
|
|
$ + HYZ1(0) *HYZ3(3,0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,0,3)
|
|
$ + HYZ2(0,2) *HYZ2(0,3)
|
|
$ - HYZ4(0,3,0,2)
|
|
HYZ4(2,0,3,2) =
|
|
$ + HYZ1(2) *HYZ3(0,3,2)
|
|
$ - HYZ4(0,2,3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,2,2)
|
|
HYZ4(2,0,3,3) =
|
|
$ + HYZ1(2) *HYZ3(0,3,3)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,2)
|
|
$ + HYZ1(3) *HYZ3(3,0,2)
|
|
$ - HYZ4(3,3,0,2)
|
|
HYZ4(2,1,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(2,1)
|
|
$ - HYZ1(0) *HYZ3(0,2,1)
|
|
$ - HYZ1(0) *HYZ3(2,0,1)
|
|
$ + HYZ4(0,0,2,1)
|
|
$ + HYZ4(0,2,0,1)
|
|
$ + HYZ4(2,0,0,1)
|
|
HYZ4(2,1,0,1) =
|
|
$ + HYZ2(0,1) *HYZ2(2,1)
|
|
$ - HYZ4(0,1,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,2,1,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,0,1,1)
|
|
HYZ4(2,1,0,2) =
|
|
$ - HYZ1(2) *HYZ3(0,2,1)
|
|
$ - HYZ1(2) *HYZ3(2,0,1)
|
|
$ + HYZ2(0,2) *HYZ2(2,1)
|
|
$ + HYZ4(2,0,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(2,2,0,1)
|
|
HYZ4(2,1,0,3) =
|
|
$ - HYZ1(3) *HYZ3(0,2,1)
|
|
$ - HYZ1(3) *HYZ3(2,0,1)
|
|
$ + HYZ2(0,3) *HYZ2(2,1)
|
|
$ + HYZ4(2,3,0,1)
|
|
$ + HYZ4(3,0,2,1)
|
|
$ + HYZ4(3,2,0,1)
|
|
HYZ4(2,1,1,0) =
|
|
$ + HYZ1(0) *HYZ3(2,1,1)
|
|
$ - HYZ2(0,1) *HYZ2(2,1)
|
|
$ + HYZ4(0,1,2,1)
|
|
$ + HYZ4(0,2,1,1)
|
|
$ + HYZ4(2,0,1,1)
|
|
HYZ4(2,1,1,2) =
|
|
$ + HYZ1(2) *HYZ3(2,1,1)
|
|
$ - 5.000000000000000d-01*HYZ2(2,1)*HYZ2(2,1)
|
|
HYZ4(2,1,1,3) =
|
|
$ + HYZ1(3) *HYZ3(2,1,1)
|
|
$ - HYZ2(2,1) *HYZ2(3,1)
|
|
$ + HYZ4(2,3,1,1)
|
|
$ + HYZ4(3,1,2,1)
|
|
$ + HYZ4(3,2,1,1)
|
|
HYZ4(2,1,2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(2,2,1)
|
|
$ - HYZ2(0,2) *HYZ2(2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,2,2,1)
|
|
$ + HYZ4(2,0,2,1)
|
|
HYZ4(2,1,2,1) =
|
|
$ + 5.000000000000000d-01*HYZ2(2,1)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,2,1,1)
|
|
HYZ4(2,1,2,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(2,2,1)
|
|
$ + 3.000000000000000d+00*HYZ4(2,2,2,1)
|
|
HYZ4(2,1,2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(2,1)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(2,2,1)
|
|
$ - HYZ2(2,1) *HYZ2(3,2)
|
|
$ + HYZ4(2,3,2,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,2,2,1)
|
|
HYZ4(2,1,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(2,1)
|
|
$ - HYZ1(0) *HYZ3(2,3,1)
|
|
$ - HYZ1(0) *HYZ3(3,2,1)
|
|
$ - HYZ2(0,3) *HYZ2(2,1)
|
|
$ + HYZ4(0,2,3,1)
|
|
$ + HYZ4(0,3,2,1)
|
|
$ + HYZ4(2,0,3,1)
|
|
HYZ4(2,1,3,1) =
|
|
$ + HYZ2(2,1) *HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,3,1,1)
|
|
$ - HYZ4(3,1,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,2,1,1)
|
|
HYZ4(2,1,3,2) =
|
|
$ - HYZ1(2) *HYZ3(2,3,1)
|
|
$ - HYZ1(2) *HYZ3(3,2,1)
|
|
$ + HYZ2(2,1) *HYZ2(3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(2,2,3,1)
|
|
$ + HYZ4(2,3,2,1)
|
|
HYZ4(2,1,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(2,1)
|
|
$ - HYZ1(3) *HYZ3(2,3,1)
|
|
$ - HYZ1(3) *HYZ3(3,2,1)
|
|
$ + HYZ4(2,3,3,1)
|
|
$ + HYZ4(3,2,3,1)
|
|
$ + HYZ4(3,3,2,1)
|
|
HYZ4(2,2,0,0) =
|
|
$ + 2.500000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(2)*HYZ1(2)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(0,2)
|
|
$ + HYZ1(0) *HYZ3(0,2,2)
|
|
$ + HYZ1(2) *HYZ3(0,0,2)
|
|
$ - HYZ4(0,0,2,2)
|
|
HYZ4(2,2,0,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,2)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,2,2)
|
|
$ + 3.000000000000000d+00*HYZ4(0,2,2,2)
|
|
HYZ4(2,2,0,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,3)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(0,2)
|
|
$ + HYZ1(2) *HYZ3(3,0,2)
|
|
$ + HYZ1(3) *HYZ3(0,2,2)
|
|
$ - HYZ4(3,0,2,2)
|
|
HYZ4(2,2,1,0) =
|
|
$ + HYZ1(0) *HYZ3(2,2,1)
|
|
$ - HYZ4(0,2,2,1)
|
|
$ - HYZ4(2,0,2,1)
|
|
$ - HYZ4(2,2,0,1)
|
|
HYZ4(2,2,1,2) =
|
|
$ + HYZ1(2) *HYZ3(2,2,1)
|
|
$ - 3.000000000000000d+00*HYZ4(2,2,2,1)
|
|
HYZ4(2,2,1,3) =
|
|
$ + HYZ1(3) *HYZ3(2,2,1)
|
|
$ - HYZ4(2,2,3,1)
|
|
$ - HYZ4(2,3,2,1)
|
|
$ - HYZ4(3,2,2,1)
|
|
HYZ4(2,2,2,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(2)*HYZ1(2)*HYZ1(2)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,2)
|
|
$ + HYZ1(2) *HYZ3(0,2,2)
|
|
$ - HYZ4(0,2,2,2)
|
|
HYZ4(2,2,2,2) =
|
|
$ + 4.166666666666666d-02*HYZ1(2)*HYZ1(2)*HYZ1(2)*HYZ1(2)
|
|
HYZ4(2,2,2,3) =
|
|
$ + 1.666666666666666d-01*HYZ1(2)*HYZ1(2)*HYZ1(2)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(3,2)
|
|
$ + HYZ1(2) *HYZ3(3,2,2)
|
|
$ - HYZ4(3,2,2,2)
|
|
HYZ4(2,2,3,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(2)*HYZ1(2)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(3,2)
|
|
$ + HYZ1(0) *HYZ3(3,2,2)
|
|
$ - 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(0,3)
|
|
$ + HYZ1(2) *HYZ3(0,3,2)
|
|
$ - HYZ4(0,3,2,2)
|
|
HYZ4(2,2,3,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(3,2,2)
|
|
$ + 3.000000000000000d+00*HYZ4(3,2,2,2)
|
|
HYZ4(2,2,3,3) =
|
|
$ + 2.500000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(3,2)
|
|
$ + HYZ1(2) *HYZ3(3,3,2)
|
|
$ + HYZ1(3) *HYZ3(3,2,2)
|
|
$ - HYZ4(3,3,2,2)
|
|
HYZ4(2,3,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(2)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(3,2)
|
|
$ - HYZ1(0) *HYZ1(2)*HYZ2(0,3)
|
|
$ + HYZ1(0) *HYZ3(0,3,2)
|
|
$ + HYZ1(2) *HYZ3(0,0,3)
|
|
$ - HYZ4(0,0,3,2)
|
|
HYZ4(2,3,0,2) =
|
|
$ + HYZ1(2) *HYZ3(3,0,2)
|
|
$ - HYZ2(0,2) *HYZ2(3,2)
|
|
$ + HYZ4(0,2,3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,2,2)
|
|
HYZ4(2,3,0,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(0,3,3)
|
|
$ + HYZ1(3) *HYZ3(0,3,2)
|
|
$ - HYZ2(0,3) *HYZ2(3,2)
|
|
$ - HYZ4(3,0,3,2)
|
|
HYZ4(2,3,1,0) =
|
|
$ + HYZ1(0) *HYZ3(2,3,1)
|
|
$ - HYZ4(0,2,3,1)
|
|
$ - HYZ4(2,0,3,1)
|
|
$ - HYZ4(2,3,0,1)
|
|
HYZ4(2,3,1,2) =
|
|
$ + HYZ1(2) *HYZ3(2,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,2,3,1)
|
|
$ - HYZ4(2,3,2,1)
|
|
HYZ4(2,3,1,3) =
|
|
$ + HYZ1(3) *HYZ3(2,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(2,3,3,1)
|
|
$ - HYZ4(3,2,3,1)
|
|
HYZ4(2,3,2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(3,2,2)
|
|
$ - HYZ1(2) *HYZ3(0,3,2)
|
|
$ - HYZ1(2) *HYZ3(3,0,2)
|
|
$ + HYZ2(0,2) *HYZ2(3,2)
|
|
$ - HYZ4(0,2,3,2)
|
|
HYZ4(2,3,2,2) =
|
|
$ + HYZ1(2) *HYZ3(3,2,2)
|
|
$ - 3.000000000000000d+00*HYZ4(3,2,2,2)
|
|
HYZ4(2,3,2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(3,3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(3,2,2)
|
|
$ + 5.000000000000000d-01*HYZ2(3,2)*HYZ2(3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(3,3,2,2)
|
|
HYZ4(2,3,3,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(2)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(3,2)
|
|
$ + HYZ1(0) *HYZ3(3,3,2)
|
|
$ - HYZ1(2) *HYZ1(3)*HYZ2(0,3)
|
|
$ + HYZ1(2) *HYZ3(0,3,3)
|
|
$ + HYZ2(0,3) *HYZ2(3,2)
|
|
$ - HYZ4(0,3,3,2)
|
|
HYZ4(2,3,3,2) =
|
|
$ + HYZ1(2) *HYZ3(3,3,2)
|
|
$ - 5.000000000000000d-01*HYZ2(3,2)*HYZ2(3,2)
|
|
HYZ4(2,3,3,3) =
|
|
$ + 1.666666666666666d-01*HYZ1(2)*HYZ1(3)*HYZ1(3)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(3,2)
|
|
$ + HYZ1(3) *HYZ3(3,3,2)
|
|
$ - HYZ4(3,3,3,2)
|
|
HYZ4(3,0,0,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(0)*HYZ1(0)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(0,3)
|
|
$ + HYZ1(0) *HYZ3(0,0,3)
|
|
$ - HYZ4(0,0,0,3)
|
|
HYZ4(3,0,0,3) =
|
|
$ + HYZ1(3) *HYZ3(0,0,3)
|
|
$ - 5.000000000000000d-01*HYZ2(0,3)*HYZ2(0,3)
|
|
HYZ4(3,0,1,0) =
|
|
$ + HYZ1(0) *HYZ3(3,0,1)
|
|
$ - HYZ4(0,3,0,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,0,0,1)
|
|
HYZ4(3,0,1,2) =
|
|
$ + HYZ1(2) *HYZ3(3,0,1)
|
|
$ - HYZ4(2,3,0,1)
|
|
$ - HYZ4(3,0,2,1)
|
|
$ - HYZ4(3,2,0,1)
|
|
HYZ4(3,0,1,3) =
|
|
$ + HYZ1(3) *HYZ3(3,0,1)
|
|
$ - HYZ4(3,0,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,3,0,1)
|
|
HYZ4(3,0,2,0) =
|
|
$ + HYZ1(0) *HYZ3(3,0,2)
|
|
$ - HYZ4(0,3,0,2)
|
|
$ - 2.000000000000000d+00*HYZ4(3,0,0,2)
|
|
HYZ4(3,0,2,3) =
|
|
$ + HYZ1(3) *HYZ3(3,0,2)
|
|
$ - HYZ4(3,0,3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(3,3,0,2)
|
|
HYZ4(3,0,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(0,3,3)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,0,3)
|
|
$ + 5.000000000000000d-01*HYZ2(0,3)*HYZ2(0,3)
|
|
$ + 2.000000000000000d+00*HYZ4(0,0,3,3)
|
|
HYZ4(3,0,3,3) =
|
|
$ + HYZ1(3) *HYZ3(0,3,3)
|
|
$ - 3.000000000000000d+00*HYZ4(0,3,3,3)
|
|
HYZ4(3,1,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(3,1)
|
|
$ - HYZ1(0) *HYZ3(0,3,1)
|
|
$ - HYZ1(0) *HYZ3(3,0,1)
|
|
$ + HYZ4(0,0,3,1)
|
|
$ + HYZ4(0,3,0,1)
|
|
$ + HYZ4(3,0,0,1)
|
|
HYZ4(3,1,0,1) =
|
|
$ + HYZ2(0,1) *HYZ2(3,1)
|
|
$ - HYZ4(0,1,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,1,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,0,1,1)
|
|
HYZ4(3,1,0,2) =
|
|
$ - HYZ1(2) *HYZ3(0,3,1)
|
|
$ - HYZ1(2) *HYZ3(3,0,1)
|
|
$ + HYZ2(0,2) *HYZ2(3,1)
|
|
$ + HYZ4(2,0,3,1)
|
|
$ + HYZ4(2,3,0,1)
|
|
$ + HYZ4(3,2,0,1)
|
|
HYZ4(3,1,0,3) =
|
|
$ - HYZ1(3) *HYZ3(0,3,1)
|
|
$ - HYZ1(3) *HYZ3(3,0,1)
|
|
$ + HYZ2(0,3) *HYZ2(3,1)
|
|
$ + HYZ4(3,0,3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,3,0,1)
|
|
HYZ4(3,1,1,0) =
|
|
$ + HYZ1(0) *HYZ3(3,1,1)
|
|
$ - HYZ2(0,1) *HYZ2(3,1)
|
|
$ + HYZ4(0,1,3,1)
|
|
$ + HYZ4(0,3,1,1)
|
|
$ + HYZ4(3,0,1,1)
|
|
HYZ4(3,1,1,2) =
|
|
$ + HYZ1(2) *HYZ3(3,1,1)
|
|
$ - HYZ4(2,3,1,1)
|
|
$ - HYZ4(3,1,2,1)
|
|
$ - HYZ4(3,2,1,1)
|
|
HYZ4(3,1,1,3) =
|
|
$ + HYZ1(3) *HYZ3(3,1,1)
|
|
$ - 5.000000000000000d-01*HYZ2(3,1)*HYZ2(3,1)
|
|
HYZ4(3,1,2,0) =
|
|
$ + HYZ1(0) *HYZ1(2)*HYZ2(3,1)
|
|
$ - HYZ1(0) *HYZ3(2,3,1)
|
|
$ - HYZ1(0) *HYZ3(3,2,1)
|
|
$ - HYZ2(0,2) *HYZ2(3,1)
|
|
$ + HYZ4(0,2,3,1)
|
|
$ + HYZ4(0,3,2,1)
|
|
$ + HYZ4(3,0,2,1)
|
|
HYZ4(3,1,2,2) =
|
|
$ + 5.000000000000000d-01*HYZ1(2)*HYZ1(2)*HYZ2(3,1)
|
|
$ - HYZ1(2) *HYZ3(2,3,1)
|
|
$ - HYZ1(2) *HYZ3(3,2,1)
|
|
$ + HYZ4(2,2,3,1)
|
|
$ + HYZ4(2,3,2,1)
|
|
$ + HYZ4(3,2,2,1)
|
|
HYZ4(3,1,2,3) =
|
|
$ + HYZ1(2) *HYZ1(3)*HYZ2(3,1)
|
|
$ - HYZ1(3) *HYZ3(2,3,1)
|
|
$ - HYZ1(3) *HYZ3(3,2,1)
|
|
$ - HYZ2(3,1) *HYZ2(3,2)
|
|
$ + HYZ4(3,2,3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(3,3,2,1)
|
|
HYZ4(3,1,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(3,3,1)
|
|
$ - HYZ2(0,3) *HYZ2(3,1)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,3,1)
|
|
$ + HYZ4(3,0,3,1)
|
|
HYZ4(3,1,3,1) =
|
|
$ + 5.000000000000000d-01*HYZ2(3,1)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,3,1,1)
|
|
HYZ4(3,1,3,2) =
|
|
$ - 2.000000000000000d+00*HYZ1(2)*HYZ3(3,3,1)
|
|
$ + HYZ2(3,1) *HYZ2(3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(2,3,3,1)
|
|
$ + HYZ4(3,2,3,1)
|
|
HYZ4(3,1,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(3,1)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(3,3,1)
|
|
$ + 3.000000000000000d+00*HYZ4(3,3,3,1)
|
|
HYZ4(3,2,0,0) =
|
|
$ + 5.000000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ2(3,2)
|
|
$ - HYZ1(0) *HYZ3(0,3,2)
|
|
$ - HYZ1(0) *HYZ3(3,0,2)
|
|
$ + HYZ4(0,0,3,2)
|
|
$ + HYZ4(0,3,0,2)
|
|
$ + HYZ4(3,0,0,2)
|
|
HYZ4(3,2,0,2) =
|
|
$ + HYZ2(0,2) *HYZ2(3,2)
|
|
$ - HYZ4(0,2,3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(0,3,2,2)
|
|
$ - 2.000000000000000d+00*HYZ4(3,0,2,2)
|
|
HYZ4(3,2,0,3) =
|
|
$ - HYZ1(3) *HYZ3(0,3,2)
|
|
$ - HYZ1(3) *HYZ3(3,0,2)
|
|
$ + HYZ2(0,3) *HYZ2(3,2)
|
|
$ + HYZ4(3,0,3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(3,3,0,2)
|
|
HYZ4(3,2,1,0) =
|
|
$ + HYZ1(0) *HYZ3(3,2,1)
|
|
$ - HYZ4(0,3,2,1)
|
|
$ - HYZ4(3,0,2,1)
|
|
$ - HYZ4(3,2,0,1)
|
|
HYZ4(3,2,1,2) =
|
|
$ + HYZ1(2) *HYZ3(3,2,1)
|
|
$ - HYZ4(2,3,2,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,2,2,1)
|
|
HYZ4(3,2,1,3) =
|
|
$ + HYZ1(3) *HYZ3(3,2,1)
|
|
$ - HYZ4(3,2,3,1)
|
|
$ - 2.000000000000000d+00*HYZ4(3,3,2,1)
|
|
HYZ4(3,2,2,0) =
|
|
$ + HYZ1(0) *HYZ3(3,2,2)
|
|
$ - HYZ2(0,2) *HYZ2(3,2)
|
|
$ + HYZ4(0,2,3,2)
|
|
$ + HYZ4(0,3,2,2)
|
|
$ + HYZ4(3,0,2,2)
|
|
HYZ4(3,2,2,3) =
|
|
$ + HYZ1(3) *HYZ3(3,2,2)
|
|
$ - 5.000000000000000d-01*HYZ2(3,2)*HYZ2(3,2)
|
|
HYZ4(3,2,3,0) =
|
|
$ + HYZ1(0) *HYZ1(3)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(0)*HYZ3(3,3,2)
|
|
$ - HYZ2(0,3) *HYZ2(3,2)
|
|
$ + 2.000000000000000d+00*HYZ4(0,3,3,2)
|
|
$ + HYZ4(3,0,3,2)
|
|
HYZ4(3,2,3,2) =
|
|
$ + 5.000000000000000d-01*HYZ2(3,2)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ4(3,3,2,2)
|
|
HYZ4(3,2,3,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(3,2)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(3,3,2)
|
|
$ + 3.000000000000000d+00*HYZ4(3,3,3,2)
|
|
HYZ4(3,3,0,0) =
|
|
$ + 2.500000000000000d-01*HYZ1(0)*HYZ1(0)*HYZ1(3)*HYZ1(3)
|
|
$ - HYZ1(0) *HYZ1(3)*HYZ2(0,3)
|
|
$ + HYZ1(0) *HYZ3(0,3,3)
|
|
$ + HYZ1(3) *HYZ3(0,0,3)
|
|
$ - HYZ4(0,0,3,3)
|
|
HYZ4(3,3,0,3) =
|
|
$ + 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,3)
|
|
$ - 2.000000000000000d+00*HYZ1(3)*HYZ3(0,3,3)
|
|
$ + 3.000000000000000d+00*HYZ4(0,3,3,3)
|
|
HYZ4(3,3,1,0) =
|
|
$ + HYZ1(0) *HYZ3(3,3,1)
|
|
$ - HYZ4(0,3,3,1)
|
|
$ - HYZ4(3,0,3,1)
|
|
$ - HYZ4(3,3,0,1)
|
|
HYZ4(3,3,1,2) =
|
|
$ + HYZ1(2) *HYZ3(3,3,1)
|
|
$ - HYZ4(2,3,3,1)
|
|
$ - HYZ4(3,2,3,1)
|
|
$ - HYZ4(3,3,2,1)
|
|
HYZ4(3,3,1,3) =
|
|
$ + HYZ1(3) *HYZ3(3,3,1)
|
|
$ - 3.000000000000000d+00*HYZ4(3,3,3,1)
|
|
HYZ4(3,3,2,0) =
|
|
$ + HYZ1(0) *HYZ3(3,3,2)
|
|
$ - HYZ4(0,3,3,2)
|
|
$ - HYZ4(3,0,3,2)
|
|
$ - HYZ4(3,3,0,2)
|
|
HYZ4(3,3,2,3) =
|
|
$ + HYZ1(3) *HYZ3(3,3,2)
|
|
$ - 3.000000000000000d+00*HYZ4(3,3,3,2)
|
|
HYZ4(3,3,3,0) =
|
|
$ + 1.666666666666666d-01*HYZ1(0)*HYZ1(3)*HYZ1(3)*HYZ1(3)
|
|
$ - 5.000000000000000d-01*HYZ1(3)*HYZ1(3)*HYZ2(0,3)
|
|
$ + HYZ1(3) *HYZ3(0,3,3)
|
|
$ - HYZ4(0,3,3,3)
|
|
HYZ4(3,3,3,3) =
|
|
$ + 4.166666666666666d-02*HYZ1(3)*HYZ1(3)*HYZ1(3)*HYZ1(3)
|
|
endif
|
|
|
|
return
|
|
end
|
|
|
|
subroutine swap2dhplxy(iflag,nmax,HXZ1,HXZ2,HXZ3,HXZ4,
|
|
$ HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4)
|
|
*********************************************************************
|
|
***** swap2dhpl evaluates H(..;y) in terms of H(..;x=1-y-z) ******
|
|
***** and H(..;z) ******
|
|
***** applied for y>(1-z)/2 ******
|
|
***** Input: HXZn,HZn; Output: HYZn ******
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
integer iflag,nmax
|
|
real(dp):: Zeta2,Zeta3,Zeta4
|
|
real(dp):: HZ1,HZ2,HZ3,HZ4,HYZ1,HYZ2,HYZ3,HYZ4
|
|
real(dp):: HXZ1,HXZ2,HXZ3,HXZ4
|
|
dimension HYZ1(0:3),HYZ2(0:3,0:3),HYZ3(0:3,0:3,0:3),
|
|
$ HYZ4(0:3,0:3,0:3,0:3)
|
|
dimension HXZ1(0:3),HXZ2(0:3,0:3),HXZ3(0:3,0:3,0:3),
|
|
$ HXZ4(0:3,0:3,0:3,0:3)
|
|
dimension HZ1(-1:1),HZ2(-1:1,-1:1),HZ3(-1:1,-1:1,-1:1),
|
|
$ HZ4(-1:1,-1:1,-1:1,-1:1)
|
|
parameter (Zeta2 = 1.6449340668482264365d0)
|
|
parameter (Zeta3 = 1.2020569031595942854d0)
|
|
parameter (Zeta4 = 1.0823232337111381915d0)
|
|
|
|
* 2001-04-23:17:22:16.hpl
|
|
* <- swap.out
|
|
* produced by form-to-fortr for gehrt@pcth62
|
|
|
|
HYZ1(0) = -HXZ1(2)-HZ1(1)
|
|
HYZ1(1) = -HXZ1(3)-HZ1(0)
|
|
HYZ1(2) = -HXZ1(0)-HZ1(1)
|
|
HYZ1(3) = -HXZ1(1)-HZ1(0)
|
|
|
|
if (nmax.eq.1) return
|
|
HYZ2(0,0) =
|
|
$ + HXZ1(2) *HZ1(1)
|
|
$ + HXZ2(2,2)
|
|
$ + HZ2(1,1)
|
|
HYZ2(0,1) =
|
|
$ + Zeta2
|
|
$ + HXZ1(2) *HZ1(0)
|
|
$ + HXZ2(2,3)
|
|
$ + HZ2(1,0)
|
|
HYZ2(0,2) =
|
|
$ + Zeta2
|
|
$ + HXZ1(2) *HZ1(1)
|
|
$ + HXZ2(2,0)
|
|
HYZ2(0,3) =
|
|
$ + Zeta2
|
|
$ + HXZ1(2) *HZ1(0)
|
|
$ + HXZ2(2,1)
|
|
$ + HZ2(0,0)
|
|
$ + HZ2(1,0)
|
|
HYZ2(1,0) =
|
|
$ - Zeta2
|
|
$ + HXZ1(3) *HZ1(1)
|
|
$ + HXZ2(3,2)
|
|
$ + HZ2(0,1)
|
|
HYZ2(1,1) =
|
|
$ + HXZ1(3) *HZ1(0)
|
|
$ + HXZ2(3,3)
|
|
$ + HZ2(0,0)
|
|
HYZ2(1,2) =
|
|
$ + Zeta2
|
|
$ + HXZ1(3) *HZ1(1)
|
|
$ + HXZ2(3,0)
|
|
$ + HZ2(0,0)
|
|
$ + HZ2(1,0)
|
|
HYZ2(1,3) =
|
|
$ - Zeta2
|
|
$ + HXZ1(3) *HZ1(0)
|
|
$ + HXZ2(3,1)
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HZ2(0,0)
|
|
HYZ2(2,0) =
|
|
$ - Zeta2
|
|
$ + HXZ1(0) *HZ1(1)
|
|
$ + HXZ2(0,2)
|
|
$ + 2.000000000000000d+00*HZ2(1,1)
|
|
HYZ2(2,1) =
|
|
$ - Zeta2
|
|
$ + HXZ1(0) *HZ1(0)
|
|
$ + HXZ2(0,3)
|
|
$ - HZ2(0,0)
|
|
$ + HZ2(0,1)
|
|
HYZ2(2,2) =
|
|
$ + HXZ1(0) *HZ1(1)
|
|
$ + HXZ2(0,0)
|
|
$ + HZ2(1,1)
|
|
HYZ2(2,3) =
|
|
$ - Zeta2
|
|
$ + HXZ1(0) *HZ1(0)
|
|
$ + HXZ2(0,1)
|
|
$ + HZ2(0,1)
|
|
HYZ2(3,0) =
|
|
$ - Zeta2
|
|
$ + HXZ1(1) *HZ1(1)
|
|
$ + HXZ2(1,2)
|
|
$ - HZ2(0,0)
|
|
$ + HZ2(0,1)
|
|
HYZ2(3,1) =
|
|
$ + Zeta2
|
|
$ + HXZ1(1) *HZ1(0)
|
|
$ + HXZ2(1,3)
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)
|
|
HYZ2(3,2) =
|
|
$ + Zeta2
|
|
$ + HXZ1(1) *HZ1(1)
|
|
$ + HXZ2(1,0)
|
|
$ + HZ2(1,0)
|
|
HYZ2(3,3) =
|
|
$ + HXZ1(1) *HZ1(0)
|
|
$ + HXZ2(1,1)
|
|
$ + HZ2(0,0)
|
|
if (nmax.eq.2) return
|
|
HYZ3(0,0,0) =
|
|
$ - HXZ1(2) *HZ2(1,1)
|
|
$ - HXZ2(2,2) *HZ1(1)
|
|
$ - HXZ3(2,2,2)
|
|
$ - HZ3(1,1,1)
|
|
HYZ3(0,0,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(1,0)
|
|
$ - HXZ2(2,2) *HZ1(0)
|
|
$ - HXZ3(2,2,3)
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(0,0,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - HXZ2(2,2) *HZ1(1)
|
|
$ - HXZ3(2,2,0)
|
|
HYZ3(0,0,3) =
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ1(2) *HZ2(1,0)
|
|
$ - HXZ2(2,2) *HZ1(0)
|
|
$ - HXZ3(2,2,1)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
$ - HZ3(1,0,0)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(0,1,0) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(0,1)
|
|
$ - HXZ2(2,3) *HZ1(1)
|
|
$ - HXZ3(2,3,2)
|
|
$ + HZ1(1) *Zeta2
|
|
$ - HZ3(1,0,1)
|
|
HYZ3(0,1,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ2(2,3) *HZ1(0)
|
|
$ - HXZ3(2,3,3)
|
|
$ - HZ3(1,0,0)
|
|
HYZ3(0,1,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ1(2) *HZ2(1,0)
|
|
$ - HXZ2(2,3) *HZ1(1)
|
|
$ - HXZ3(2,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta2
|
|
$ - HZ3(0,1,0)
|
|
$ - HZ3(1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,1,0)
|
|
HYZ3(0,1,3) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ2(-1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ2(0,0)
|
|
$ - HXZ2(2,3) *HZ1(0)
|
|
$ - HXZ3(2,3,1)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(0) *Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3( -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(-1,1,0)
|
|
$ - HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HZ3(1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,0,0)
|
|
HYZ3(0,2,0) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ2(1,1)
|
|
$ - HXZ2(2,0) *HZ1(1)
|
|
$ - HXZ3(2,0,2)
|
|
$ - HZ1(1) *Zeta2
|
|
HYZ3(0,2,1) =
|
|
$ + Zeta3
|
|
$ + HXZ1(2) *Zeta2
|
|
$ + HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ1(2) *HZ2(0,1)
|
|
$ - HXZ2(2,0) *HZ1(0)
|
|
$ - HXZ3(2,0,3)
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3(0,1,0)
|
|
$ + HZ3(1,1,0)
|
|
HYZ3(0,2,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *HZ2(1,1)
|
|
$ - HXZ2(2,0) *HZ1(1)
|
|
$ - HXZ3(2,0,0)
|
|
HYZ3(0,2,3) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(0,1)
|
|
$ - HXZ2(2,0) *HZ1(0)
|
|
$ - HXZ3(2,0,1)
|
|
$ - HZ1(0) *Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3(1,0,0)
|
|
$ + HZ3(1,1,0)
|
|
HYZ3(0,3,0) =
|
|
$ + HXZ1(2) *Zeta2
|
|
$ + HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ1(2) *HZ2(0,1)
|
|
$ - HXZ2(2,1) *HZ1(1)
|
|
$ - HXZ3(2,1,2)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,0,1)
|
|
$ + HZ3(0,1,0)
|
|
$ + HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
HYZ3(0,3,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ2(-1,0)
|
|
$ - HXZ2(2,1) *HZ1(0)
|
|
$ - HXZ3(2,1,3)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3( -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ + HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,-1,0)
|
|
HYZ3(0,3,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *Zeta2
|
|
$ - HXZ1(2) *HZ2(1,0)
|
|
$ - HXZ2(2,1) *HZ1(1)
|
|
$ - HXZ3(2,1,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta2
|
|
$ - HZ3(0,1,0)
|
|
$ - HZ3(1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,1,0)
|
|
HYZ3(0,3,3) =
|
|
$ + Zeta3
|
|
$ - HXZ1(2) *HZ2(0,0)
|
|
$ - HXZ2(2,1) *HZ1(0)
|
|
$ - HXZ3(2,1,1)
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(1,0,0)
|
|
HYZ3(1,0,0) =
|
|
$ + Zeta3
|
|
$ - HXZ1(3) *HZ2(1,1)
|
|
$ - HXZ2(3,2) *HZ1(1)
|
|
$ - HXZ3(3,2,2)
|
|
$ - HZ3(0,1,1)
|
|
HYZ3(1,0,1) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(1,0)
|
|
$ - HXZ2(3,2) *HZ1(0)
|
|
$ - HXZ3(3,2,3)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(1,0,2) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - HXZ2(3,2) *HZ1(1)
|
|
$ - HXZ3(3,2,0)
|
|
$ - HZ1(0) *Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3(1,0,0)
|
|
$ + HZ3(1,1,0)
|
|
HYZ3(1,0,3) =
|
|
$ + Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ1(3) *HZ2(1,0)
|
|
$ - HXZ2(3,2) *HZ1(0)
|
|
$ - HXZ3(3,2,1)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(1,1,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(0,1)
|
|
$ - HXZ2(3,3) *HZ1(1)
|
|
$ - HXZ3(3,3,2)
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,1)
|
|
HYZ3(1,1,1) =
|
|
$ - HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ2(3,3) *HZ1(0)
|
|
$ - HXZ3(3,3,3)
|
|
$ - HZ3(0,0,0)
|
|
HYZ3(1,1,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ1(3) *HZ2(1,0)
|
|
$ - HXZ2(3,3) *HZ1(1)
|
|
$ - HXZ3(3,3,0)
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(1,0,0)
|
|
HYZ3(1,1,3) =
|
|
$ + Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ2(-1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ2(0,0)
|
|
$ - HXZ2(3,3) *HZ1(0)
|
|
$ - HXZ3(3,3,1)
|
|
$ - HZ1( -1)*Zeta2
|
|
$ + HZ1(0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ3(0,0,0)
|
|
HYZ3(1,2,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ2(1,1)
|
|
$ - HXZ2(3,0) *HZ1(1)
|
|
$ - HXZ3(3,0,2)
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,1)
|
|
$ - HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(1,2,1) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ + HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ1(3) *HZ2(0,1)
|
|
$ - HXZ2(3,0) *HZ1(0)
|
|
$ - HXZ3(3,0,3)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(1,2,2) =
|
|
$ - HXZ1(3) *HZ2(1,1)
|
|
$ - HXZ2(3,0) *HZ1(1)
|
|
$ - HXZ3(3,0,0)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
$ - HZ3(1,0,0)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(1,2,3) =
|
|
$ + Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(0,1)
|
|
$ - HXZ2(3,0) *HZ1(0)
|
|
$ - HXZ3(3,0,1)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(1,3,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(3) *Zeta2
|
|
$ + HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ1(3) *HZ2(0,1)
|
|
$ - HXZ2(3,1) *HZ1(1)
|
|
$ - HXZ3(3,1,2)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3( -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ3(0,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,0,1)
|
|
HYZ3(1,3,1) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ2(-1,0)
|
|
$ - HXZ2(3,1) *HZ1(0)
|
|
$ - HXZ3(3,1,3)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(0) *Zeta2
|
|
$ + 4.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
HYZ3(1,3,2) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(3) *Zeta2
|
|
$ - HXZ1(3) *HZ2(1,0)
|
|
$ - HXZ2(3,1) *HZ1(1)
|
|
$ - HXZ3(3,1,0)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(0) *Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3( -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(-1,1,0)
|
|
$ - HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HZ3(1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,0,0)
|
|
HYZ3(1,3,3) =
|
|
$ + Zeta3
|
|
$ - HXZ1(3) *HZ2(0,0)
|
|
$ - HXZ2(3,1) *HZ1(0)
|
|
$ - HXZ3(3,1,1)
|
|
$ - HZ1( -1)*Zeta2
|
|
$ + HZ1(0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ3(0,0,0)
|
|
HYZ3(2,0,0) =
|
|
$ + Zeta3
|
|
$ - HXZ1(0) *HZ2(1,1)
|
|
$ - HXZ2(0,2) *HZ1(1)
|
|
$ - HXZ3(0,2,2)
|
|
$ + HZ1(1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ3(1,1,1)
|
|
HYZ3(2,0,1) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(1,0)
|
|
$ - HXZ2(0,2) *HZ1(0)
|
|
$ - HXZ3(0,2,3)
|
|
$ + HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(2,0,2) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - HXZ2(0,2) *HZ1(1)
|
|
$ - HXZ3(0,2,0)
|
|
$ - HZ1(1) *Zeta2
|
|
HYZ3(2,0,3) =
|
|
$ + Zeta3
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ1(0) *HZ2(1,0)
|
|
$ - HXZ2(0,2) *HZ1(0)
|
|
$ - HXZ3(0,2,1)
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,1)
|
|
$ - HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(2,1,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(0,1)
|
|
$ - HXZ2(0,3) *HZ1(1)
|
|
$ - HXZ3(0,3,2)
|
|
$ + HZ3(0,0,1)
|
|
$ - 2.000000000000000d+00*HZ3(0,1,1)
|
|
HYZ3(2,1,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ2(0,3) *HZ1(0)
|
|
$ - HXZ3(0,3,3)
|
|
$ + HZ1(0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,0,1)
|
|
HYZ3(2,1,2) =
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ1(0) *HZ2(1,0)
|
|
$ - HXZ2(0,3) *HZ1(1)
|
|
$ - HXZ3(0,3,0)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta2
|
|
$ + HZ1(1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,0,1)
|
|
$ + HZ3(0,1,0)
|
|
$ + HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
HYZ3(2,1,3) =
|
|
$ + Zeta3
|
|
$ + HXZ1(0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ2(-1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ2(0,0)
|
|
$ - HXZ2(0,3) *HZ1(0)
|
|
$ - HXZ3(0,3,1)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3( -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ3(-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ3(0,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,0,1)
|
|
HYZ3(2,2,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ2(1,1)
|
|
$ - HXZ2(0,0) *HZ1(1)
|
|
$ - HXZ3(0,0,2)
|
|
$ + HZ1(1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ3(1,1,1)
|
|
HYZ3(2,2,1) =
|
|
$ + HXZ1(0) *Zeta2
|
|
$ + HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ1(0) *HZ2(0,1)
|
|
$ - HXZ2(0,0) *HZ1(0)
|
|
$ - HXZ3(0,0,3)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ + HZ3(0,0,1)
|
|
$ - HZ3(0,1,1)
|
|
HYZ3(2,2,2) =
|
|
$ - HXZ1(0) *HZ2(1,1)
|
|
$ - HXZ2(0,0) *HZ1(1)
|
|
$ - HXZ3(0,0,0)
|
|
$ - HZ3(1,1,1)
|
|
HYZ3(2,2,3) =
|
|
$ + Zeta3
|
|
$ + HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(0,1)
|
|
$ - HXZ2(0,0) *HZ1(0)
|
|
$ - HXZ3(0,0,1)
|
|
$ - HZ3(0,1,1)
|
|
HYZ3(2,3,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(0) *Zeta2
|
|
$ + HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ1(0) *HZ2(0,1)
|
|
$ - HXZ2(0,1) *HZ1(1)
|
|
$ - HXZ3(0,1,2)
|
|
$ + HZ3(0,0,1)
|
|
$ - 2.000000000000000d+00*HZ3(0,1,1)
|
|
HYZ3(2,3,1) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ2(-1,0)
|
|
$ - HXZ2(0,1) *HZ1(0)
|
|
$ - HXZ3(0,1,3)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ + HZ3( -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,0,1)
|
|
HYZ3(2,3,2) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(0) *Zeta2
|
|
$ - HXZ1(0) *HZ2(1,0)
|
|
$ - HXZ2(0,1) *HZ1(1)
|
|
$ - HXZ3(0,1,0)
|
|
$ + HZ1(1) *Zeta2
|
|
$ - HZ3(1,0,1)
|
|
HYZ3(2,3,3) =
|
|
$ + Zeta3
|
|
$ - HXZ1(0) *HZ2(0,0)
|
|
$ - HXZ2(0,1) *HZ1(0)
|
|
$ - HXZ3(0,1,1)
|
|
$ + HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,1)
|
|
HYZ3(3,0,0) =
|
|
$ - HXZ1(1) *HZ2(1,1)
|
|
$ - HXZ2(1,2) *HZ1(1)
|
|
$ - HXZ3(1,2,2)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ + HZ3(0,0,1)
|
|
$ - HZ3(0,1,1)
|
|
HYZ3(3,0,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(1,0)
|
|
$ - HXZ2(1,2) *HZ1(0)
|
|
$ - HXZ3(1,2,3)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(3,0,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - HXZ2(1,2) *HZ1(1)
|
|
$ - HXZ3(1,2,0)
|
|
$ + HZ1(1) *Zeta2
|
|
$ + HZ3(0,1,0)
|
|
$ + HZ3(1,1,0)
|
|
HYZ3(3,0,3) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ1(1) *HZ2(1,0)
|
|
$ - HXZ2(1,2) *HZ1(0)
|
|
$ - HXZ3(1,2,1)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,0,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(3,1,0) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(0,1)
|
|
$ - HXZ2(1,3) *HZ1(1)
|
|
$ - HXZ3(1,3,2)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ + HZ3( -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,0,1)
|
|
HYZ3(3,1,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ2(1,3) *HZ1(0)
|
|
$ - HXZ3(1,3,3)
|
|
$ - HZ1( -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ - HZ3( -1,0,0)
|
|
HYZ3(3,1,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ1(1) *HZ2(1,0)
|
|
$ - HXZ2(1,3) *HZ1(1)
|
|
$ - HXZ3(1,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3( -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ + HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HZ3(1,-1,0)
|
|
HYZ3(3,1,3) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ2(-1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ2(0,0)
|
|
$ - HXZ2(1,3) *HZ1(0)
|
|
$ - HXZ3(1,3,1)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta2
|
|
$ - HZ1(0) *Zeta2
|
|
$ + 4.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ3(0,-1,0)
|
|
HYZ3(3,2,0) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ2(1,1)
|
|
$ - HXZ2(1,0) *HZ1(1)
|
|
$ - HXZ3(1,0,2)
|
|
$ + HZ3(1,0,0)
|
|
$ - HZ3(1,0,1)
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(3,2,1) =
|
|
$ + Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ + HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ1(1) *HZ2(0,1)
|
|
$ - HXZ2(1,0) *HZ1(0)
|
|
$ - HXZ3(1,0,3)
|
|
$ + 2.000000000000000d+00*HZ3(0,-1,0)
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(3,2,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *HZ2(1,1)
|
|
$ - HXZ2(1,0) *HZ1(1)
|
|
$ - HXZ3(1,0,0)
|
|
$ - HZ1(1) *Zeta2
|
|
$ - HZ3(1,1,0)
|
|
HYZ3(3,2,3) =
|
|
$ - 2.000000000000000d+00*Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(0,1)
|
|
$ - HXZ2(1,0) *HZ1(0)
|
|
$ - HXZ3(1,0,1)
|
|
$ - HZ1(0) *Zeta2
|
|
$ - HZ3(0,1,0)
|
|
HYZ3(3,3,0) =
|
|
$ + Zeta3
|
|
$ + HXZ1(1) *Zeta2
|
|
$ + HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ1(1) *HZ2(0,1)
|
|
$ - HXZ2(1,1) *HZ1(1)
|
|
$ - HXZ3(1,1,2)
|
|
$ + HZ1(0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ3(0,0,0)
|
|
$ - HZ3(0,0,1)
|
|
HYZ3(3,3,1) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ2(-1,0)
|
|
$ - HXZ2(1,1) *HZ1(0)
|
|
$ - HXZ3(1,1,3)
|
|
$ - HZ1( -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ3(-1,-1,0)
|
|
$ - HZ3( -1,0,0)
|
|
HYZ3(3,3,2) =
|
|
$ + Zeta3
|
|
$ - HXZ1(1) *Zeta2
|
|
$ - HXZ1(1) *HZ2(1,0)
|
|
$ - HXZ2(1,1) *HZ1(1)
|
|
$ - HXZ3(1,1,0)
|
|
$ - HZ3(1,0,0)
|
|
HYZ3(3,3,3) =
|
|
$ - HXZ1(1) *HZ2(0,0)
|
|
$ - HXZ2(1,1) *HZ1(0)
|
|
$ - HXZ3(1,1,1)
|
|
$ - HZ3(0,0,0)
|
|
if (nmax.eq.3) return
|
|
HYZ4(0,0,0,0) =
|
|
$ + HXZ1(2) *HZ3(1,1,1)
|
|
$ + HXZ2(2,2) *HZ2(1,1)
|
|
$ + HXZ3(2,2,2) *HZ1(1)
|
|
$ + HXZ4(2,2,2,2)
|
|
$ + HZ4(1,1,1,1)
|
|
HYZ4(0,0,0,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(1,0)
|
|
$ + HXZ3(2,2,2) *HZ1(0)
|
|
$ + HXZ4(2,2,2,3)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(0,0,0,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + HXZ3(2,2,2) *HZ1(1)
|
|
$ + HXZ4(2,2,2,0)
|
|
HYZ4(0,0,0,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ2(2,2) *HZ2(1,0)
|
|
$ + HXZ3(2,2,2) *HZ1(0)
|
|
$ + HXZ4(2,2,2,1)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(0,0,1,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(0,1)
|
|
$ + HXZ3(2,2,3) *HZ1(1)
|
|
$ + HXZ4(2,2,3,2)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(0,0,1,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ3(2,2,3) *HZ1(0)
|
|
$ + HXZ4(2,2,3,3)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(0,0,1,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,1,0)
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ2(2,2) *HZ2(1,0)
|
|
$ + HXZ3(2,2,3) *HZ1(1)
|
|
$ + HXZ4(2,2,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,0,1,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(-1,1,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,0,0)
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(2,2)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(2,2)*HZ2(0,0)
|
|
$ + HXZ3(2,2,3) *HZ1(0)
|
|
$ + HXZ4(2,2,3,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(0,0,2,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,2)*HZ2(1,1)
|
|
$ + HXZ3(2,2,0) *HZ1(1)
|
|
$ + HXZ4(2,2,0,2)
|
|
$ - HZ1(1) *Zeta3
|
|
HYZ4(0,0,2,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ1(2) *HZ3(1,1,0)
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ - HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ2(2,2) *HZ2(0,1)
|
|
$ + HXZ3(2,2,0) *HZ1(0)
|
|
$ + HXZ4(2,2,0,3)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(0,0,2,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ2(2,2) *HZ2(1,1)
|
|
$ + HXZ3(2,2,0) *HZ1(1)
|
|
$ + HXZ4(2,2,0,0)
|
|
HYZ4(0,0,2,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ - HXZ1(2) *HZ3(1,1,0)
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(0,1)
|
|
$ + HXZ3(2,2,0) *HZ1(0)
|
|
$ + HXZ4(2,2,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(0,0,3,0) =
|
|
$ - 5.250000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ - HXZ2(2,2) *Zeta2
|
|
$ - HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ2(2,2) *HZ2(0,1)
|
|
$ + HXZ3(2,2,1) *HZ1(1)
|
|
$ + HXZ4(2,2,1,2)
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(0,0,3,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,-1,0)
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,2)*HZ2(-1,0)
|
|
$ + HXZ3(2,2,1) *HZ1(0)
|
|
$ + HXZ4(2,2,1,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,0,0)
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(0,0,3,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,1,0)
|
|
$ + HXZ2(2,2) *Zeta2
|
|
$ + HXZ2(2,2) *HZ2(1,0)
|
|
$ + HXZ3(2,2,1) *HZ1(1)
|
|
$ + HXZ4(2,2,1,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,0,3,3) =
|
|
$ - 1.750000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ2(2,2) *HZ2(0,0)
|
|
$ + HXZ3(2,2,1) *HZ1(0)
|
|
$ + HXZ4(2,2,1,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(0,1,0,0) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(0,1,1)
|
|
$ + HXZ2(2,3) *HZ2(1,1)
|
|
$ + HXZ3(2,3,2) *HZ1(1)
|
|
$ + HXZ4(2,3,2,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(1,0,1,1)
|
|
HYZ4(0,1,0,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(1,0)
|
|
$ + HXZ3(2,3,2) *HZ1(0)
|
|
$ + HXZ4(2,3,2,3)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,1,0,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ - HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + HXZ3(2,3,2) *HZ1(1)
|
|
$ + HXZ4(2,3,2,0)
|
|
$ + 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ - HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,1,0,3) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ2(2,3) *HZ2(1,0)
|
|
$ + HXZ3(2,3,2) *HZ1(0)
|
|
$ + HXZ4(2,3,2,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,1,1,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(0,1)
|
|
$ + HXZ3(2,3,3) *HZ1(1)
|
|
$ + HXZ4(2,3,3,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,0,1)
|
|
HYZ4(0,1,1,1) =
|
|
$ + Zeta4
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ3(2,3,3) *HZ1(0)
|
|
$ + HXZ4(2,3,3,3)
|
|
$ + HZ4(1,0,0,0)
|
|
HYZ4(0,1,1,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ2(2,3) *HZ2(1,0)
|
|
$ + HXZ3(2,3,3) *HZ1(1)
|
|
$ + HXZ4(2,3,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(0,1,1,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(2)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(2,3)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(2,3)*HZ2(0,0)
|
|
$ + HXZ3(2,3,3) *HZ1(0)
|
|
$ + HXZ4(2,3,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
HYZ4(0,1,2,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,3)*HZ2(1,1)
|
|
$ + HXZ3(2,3,0) *HZ1(1)
|
|
$ + HXZ4(2,3,0,2)
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,1)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,1,2,1) =
|
|
$ + Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ - HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ2(2,3) *HZ2(0,1)
|
|
$ + HXZ3(2,3,0) *HZ1(0)
|
|
$ + HXZ4(2,3,0,3)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,1,2,2) =
|
|
$ + Zeta4
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,3) *HZ2(1,1)
|
|
$ + HXZ3(2,3,0) *HZ1(1)
|
|
$ + HXZ4(2,3,0,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,1,2,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(0,1)
|
|
$ + HXZ3(2,3,0) *HZ1(0)
|
|
$ + HXZ4(2,3,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,1,3,0) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,1)
|
|
$ - HXZ2(2,3) *Zeta2
|
|
$ - HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ2(2,3) *HZ2(0,1)
|
|
$ + HXZ3(2,3,1) *HZ1(1)
|
|
$ + HXZ4(2,3,1,2)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - HZ4( -1,0,0,1)
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,1)
|
|
HYZ4(0,1,3,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,3)*HZ2(-1,0)
|
|
$ + HXZ3(2,3,1) *HZ1(0)
|
|
$ + HXZ4(2,3,1,3)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
HYZ4(0,1,3,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(-1,1,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,0,0)
|
|
$ + HXZ2(2,3) *Zeta2
|
|
$ + HXZ2(2,3) *HZ2(1,0)
|
|
$ + HXZ3(2,3,1) *HZ1(1)
|
|
$ + HXZ4(2,3,1,0)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 4.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(0,1,3,3) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(2)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ2(2,3) *HZ2(0,0)
|
|
$ + HXZ3(2,3,1) *HZ1(0)
|
|
$ + HXZ4(2,3,1,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
HYZ4(0,2,0,0) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(1,1,1)
|
|
$ + HXZ2(2,0) *HZ2(1,1)
|
|
$ + HXZ3(2,0,2) *HZ1(1)
|
|
$ + HXZ4(2,0,2,2)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
HYZ4(0,2,0,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(1,0)
|
|
$ + HXZ3(2,0,2) *HZ1(0)
|
|
$ + HXZ4(2,0,2,3)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(0,2,0,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + HXZ3(2,0,2) *HZ1(1)
|
|
$ + HXZ4(2,0,2,0)
|
|
HYZ4(0,2,0,3) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ2(2,0) *HZ2(1,0)
|
|
$ + HXZ3(2,0,2) *HZ1(0)
|
|
$ + HXZ4(2,0,2,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(0,2,1,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,1,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(0,1)
|
|
$ + HXZ3(2,0,3) *HZ1(1)
|
|
$ + HXZ4(2,0,3,2)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(1,1,0,1)
|
|
HYZ4(0,2,1,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ3(2,0,3) *HZ1(0)
|
|
$ + HXZ4(2,0,3,3)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
HYZ4(0,2,1,2) =
|
|
$ + Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(0)*Zeta2
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ2(2,0) *HZ2(1,0)
|
|
$ + HXZ3(2,0,3) *HZ1(1)
|
|
$ + HXZ4(2,0,3,0)
|
|
$ - 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,2,1,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(2,0)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(2,0)*HZ2(0,0)
|
|
$ + HXZ3(2,0,3) *HZ1(0)
|
|
$ + HXZ4(2,0,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(0,2,2,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(2)*HZ3(1,1,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,0)*HZ2(1,1)
|
|
$ + HXZ3(2,0,0) *HZ1(1)
|
|
$ + HXZ4(2,0,0,2)
|
|
$ - HZ1(1) *Zeta3
|
|
HYZ4(0,2,2,1) =
|
|
$ + Zeta4
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ - HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ1(2) *HZ3(0,1,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ - HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ2(2,0) *HZ2(0,1)
|
|
$ + HXZ3(2,0,0) *HZ1(0)
|
|
$ + HXZ4(2,0,0,3)
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(0,2,2,2) =
|
|
$ + Zeta4
|
|
$ + HXZ1(2) *HZ3(1,1,1)
|
|
$ + HXZ2(2,0) *HZ2(1,1)
|
|
$ + HXZ3(2,0,0) *HZ1(1)
|
|
$ + HXZ4(2,0,0,0)
|
|
HYZ4(0,2,2,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(0,1,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(0,1)
|
|
$ + HXZ3(2,0,0) *HZ1(0)
|
|
$ + HXZ4(2,0,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(0,2,3,0) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,1,1)
|
|
$ - HXZ2(2,0) *Zeta2
|
|
$ - HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ2(2,0) *HZ2(0,1)
|
|
$ + HXZ3(2,0,1) *HZ1(1)
|
|
$ + HXZ4(2,0,1,2)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
HYZ4(0,2,3,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,1)
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,0)*HZ2(-1,0)
|
|
$ + HXZ3(2,0,1) *HZ1(0)
|
|
$ + HXZ4(2,0,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(0,2,3,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ2(2,0) *Zeta2
|
|
$ + HXZ2(2,0) *HZ2(1,0)
|
|
$ + HXZ3(2,0,1) *HZ1(1)
|
|
$ + HXZ4(2,0,1,0)
|
|
$ + 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ - HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,2,3,3) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ2(2,0) *HZ2(0,0)
|
|
$ + HXZ3(2,0,1) *HZ1(0)
|
|
$ + HXZ4(2,0,1,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,0,0)
|
|
$ - HZ4(1,1,0,0)
|
|
HYZ4(0,3,0,0) =
|
|
$ + 5.250000000000000d+00*Zeta4
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ - HXZ1(2) *HZ3(0,0,1)
|
|
$ + HXZ1(2) *HZ3(0,1,1)
|
|
$ + HXZ2(2,1) *HZ2(1,1)
|
|
$ + HXZ3(2,1,2) *HZ1(1)
|
|
$ + HXZ4(2,1,2,2)
|
|
$ + 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,0,1,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ + HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
HYZ4(0,3,0,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(1,0)
|
|
$ + HXZ3(2,1,2) *HZ1(0)
|
|
$ + HXZ4(2,1,2,3)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,3,0,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + HXZ3(2,1,2) *HZ1(1)
|
|
$ + HXZ4(2,1,2,0)
|
|
$ - 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,3,0,3) =
|
|
$ + 4.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ2(2,1) *HZ2(1,0)
|
|
$ + HXZ3(2,1,2) *HZ1(0)
|
|
$ + HXZ4(2,1,2,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,3,1,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(2) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,1)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(0,1)
|
|
$ + HXZ3(2,1,3) *HZ1(1)
|
|
$ + HXZ4(2,1,3,2)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
HYZ4(0,3,1,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ + HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ3(2,1,3) *HZ1(0)
|
|
$ + HXZ4(2,1,3,3)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
HYZ4(0,3,1,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ - HXZ1(2) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(1,-1,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ2(2,1) *HZ2(1,0)
|
|
$ + HXZ3(2,1,3) *HZ1(1)
|
|
$ + HXZ4(2,1,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 4.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + 4.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(0,3,1,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(2,1)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(2,1)*HZ2(0,0)
|
|
$ + HXZ3(2,1,3) *HZ1(0)
|
|
$ + HXZ4(2,1,3,1)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
HYZ4(0,3,2,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ - HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ1(2) *HZ3(1,0,1)
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,1)*HZ2(1,1)
|
|
$ + HXZ3(2,1,0) *HZ1(1)
|
|
$ + HXZ4(2,1,0,2)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,1)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,3,2,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,-1,0)
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ - HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ2(2,1) *HZ2(0,1)
|
|
$ + HXZ3(2,1,0) *HZ1(0)
|
|
$ + HXZ4(2,1,0,3)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,3,2,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(1)*Zeta2
|
|
$ + HXZ1(2) *HZ3(1,1,0)
|
|
$ + HXZ2(2,1) *HZ2(1,1)
|
|
$ + HXZ3(2,1,0) *HZ1(1)
|
|
$ + HXZ4(2,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(0,3,2,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(2)*Zeta3
|
|
$ + HXZ1(2) *HZ1(0)*Zeta2
|
|
$ + HXZ1(2) *HZ3(0,1,0)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(0,1)
|
|
$ + HXZ3(2,1,0) *HZ1(0)
|
|
$ + HXZ4(2,1,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(0,3,3,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ - HXZ1(2) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(2)*HZ3(0,0,0)
|
|
$ + HXZ1(2) *HZ3(0,0,1)
|
|
$ - HXZ2(2,1) *Zeta2
|
|
$ - HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ2(2,1) *HZ2(0,1)
|
|
$ + HXZ3(2,1,1) *HZ1(1)
|
|
$ + HXZ4(2,1,1,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
HYZ4(0,3,3,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(2)*HZ3(-1,-1,0)
|
|
$ + HXZ1(2) *HZ3(-1,0,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(2,1)*HZ2(-1,0)
|
|
$ + HXZ3(2,1,1) *HZ1(0)
|
|
$ + HXZ4(2,1,1,3)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
HYZ4(0,3,3,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(2) *Zeta3
|
|
$ + HXZ1(2) *HZ3(1,0,0)
|
|
$ + HXZ2(2,1) *Zeta2
|
|
$ + HXZ2(2,1) *HZ2(1,0)
|
|
$ + HXZ3(2,1,1) *HZ1(1)
|
|
$ + HXZ4(2,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(0,3,3,3) =
|
|
$ + Zeta4
|
|
$ + HXZ1(2) *HZ3(0,0,0)
|
|
$ + HXZ2(2,1) *HZ2(0,0)
|
|
$ + HXZ3(2,1,1) *HZ1(0)
|
|
$ + HXZ4(2,1,1,1)
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(1,0,0,0)
|
|
HYZ4(1,0,0,0) =
|
|
$ - Zeta4
|
|
$ + HXZ1(3) *HZ3(1,1,1)
|
|
$ + HXZ2(3,2) *HZ2(1,1)
|
|
$ + HXZ3(3,2,2) *HZ1(1)
|
|
$ + HXZ4(3,2,2,2)
|
|
$ + HZ4(0,1,1,1)
|
|
HYZ4(1,0,0,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(1,0)
|
|
$ + HXZ3(3,2,2) *HZ1(0)
|
|
$ + HXZ4(3,2,2,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,0,0,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + HXZ3(3,2,2) *HZ1(1)
|
|
$ + HXZ4(3,2,2,0)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(1,0,0,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ2(3,2) *HZ2(1,0)
|
|
$ + HXZ3(3,2,2) *HZ1(0)
|
|
$ + HXZ4(3,2,2,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,0,1,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(0,1)
|
|
$ + HXZ3(3,2,3) *HZ1(1)
|
|
$ + HXZ4(3,2,3,2)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(1,0,1,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ3(3,2,3) *HZ1(0)
|
|
$ + HXZ4(3,2,3,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(1,0,1,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,1,0)
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ2(3,2) *HZ2(1,0)
|
|
$ + HXZ3(3,2,3) *HZ1(1)
|
|
$ + HXZ4(3,2,3,0)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(1,0,1,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(-1,1,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,0,0)
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(3,2)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(3,2)*HZ2(0,0)
|
|
$ + HXZ3(3,2,3) *HZ1(0)
|
|
$ + HXZ4(3,2,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
HYZ4(1,0,2,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,2)*HZ2(1,1)
|
|
$ + HXZ3(3,2,0) *HZ1(1)
|
|
$ + HXZ4(3,2,0,2)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(1,0,2,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ1(3) *HZ3(1,1,0)
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ - HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ2(3,2) *HZ2(0,1)
|
|
$ + HXZ3(3,2,0) *HZ1(0)
|
|
$ + HXZ4(3,2,0,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(1,0,2,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ2(3,2) *HZ2(1,1)
|
|
$ + HXZ3(3,2,0) *HZ1(1)
|
|
$ + HXZ4(3,2,0,0)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(1,0,2,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ - HXZ1(3) *HZ3(1,1,0)
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(0,1)
|
|
$ + HXZ3(3,2,0) *HZ1(0)
|
|
$ + HXZ4(3,2,0,1)
|
|
$ + 4.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(1,0,3,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ - HXZ2(3,2) *Zeta2
|
|
$ - HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ2(3,2) *HZ2(0,1)
|
|
$ + HXZ3(3,2,1) *HZ1(1)
|
|
$ + HXZ4(3,2,1,2)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 8.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(1,0,3,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,-1,0)
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,2)*HZ2(-1,0)
|
|
$ + HXZ3(3,2,1) *HZ1(0)
|
|
$ + HXZ4(3,2,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
HYZ4(1,0,3,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,1,0)
|
|
$ + HXZ2(3,2) *Zeta2
|
|
$ + HXZ2(3,2) *HZ2(1,0)
|
|
$ + HXZ3(3,2,1) *HZ1(1)
|
|
$ + HXZ4(3,2,1,0)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(1,0,3,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ2(3,2) *HZ2(0,0)
|
|
$ + HXZ3(3,2,1) *HZ1(0)
|
|
$ + HXZ4(3,2,1,1)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(1,1,0,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(0,1,1)
|
|
$ + HXZ2(3,3) *HZ2(1,1)
|
|
$ + HXZ3(3,3,2) *HZ1(1)
|
|
$ + HXZ4(3,3,2,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,0,1,1)
|
|
HYZ4(1,1,0,1) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(1,0)
|
|
$ + HXZ3(3,3,2) *HZ1(0)
|
|
$ + HXZ4(3,3,2,3)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(1,1,0,2) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ - HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + HXZ3(3,3,2) *HZ1(1)
|
|
$ + HXZ4(3,3,2,0)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,0,0)
|
|
$ - HZ4(1,1,0,0)
|
|
HYZ4(1,1,0,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ2(3,3) *HZ2(1,0)
|
|
$ + HXZ3(3,3,2) *HZ1(0)
|
|
$ + HXZ4(3,3,2,1)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(1,1,1,0) =
|
|
$ - Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(0,1)
|
|
$ + HXZ3(3,3,3) *HZ1(1)
|
|
$ + HXZ4(3,3,3,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
HYZ4(1,1,1,1) =
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ3(3,3,3) *HZ1(0)
|
|
$ + HXZ4(3,3,3,3)
|
|
$ + HZ4(0,0,0,0)
|
|
HYZ4(1,1,1,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ2(3,3) *HZ2(1,0)
|
|
$ + HXZ3(3,3,3) *HZ1(1)
|
|
$ + HXZ4(3,3,3,0)
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(1,0,0,0)
|
|
HYZ4(1,1,1,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(3)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(3,3)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(3,3)*HZ2(0,0)
|
|
$ + HXZ3(3,3,3) *HZ1(0)
|
|
$ + HXZ4(3,3,3,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
HYZ4(1,1,2,0) =
|
|
$ - Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,3)*HZ2(1,1)
|
|
$ + HXZ3(3,3,0) *HZ1(1)
|
|
$ + HXZ4(3,3,0,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(1,1,2,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ - HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ2(3,3) *HZ2(0,1)
|
|
$ + HXZ3(3,3,0) *HZ1(0)
|
|
$ + HXZ4(3,3,0,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(1,1,2,2) =
|
|
$ - 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,3) *HZ2(1,1)
|
|
$ + HXZ3(3,3,0) *HZ1(1)
|
|
$ + HXZ4(3,3,0,0)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(1,1,2,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(0,1)
|
|
$ + HXZ3(3,3,0) *HZ1(0)
|
|
$ + HXZ4(3,3,0,1)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(1,1,3,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,1)
|
|
$ - HXZ2(3,3) *Zeta2
|
|
$ - HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ2(3,3) *HZ2(0,1)
|
|
$ + HXZ3(3,3,1) *HZ1(1)
|
|
$ + HXZ4(3,3,1,2)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
HYZ4(1,1,3,1) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,3)*HZ2(-1,0)
|
|
$ + HXZ3(3,3,1) *HZ1(0)
|
|
$ + HXZ4(3,3,1,3)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 6.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ - 5.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(1,1,3,2) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(-1,1,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,0,0)
|
|
$ + HXZ2(3,3) *Zeta2
|
|
$ + HXZ2(3,3) *HZ2(1,0)
|
|
$ + HXZ3(3,3,1) *HZ1(1)
|
|
$ + HXZ4(3,3,1,0)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
HYZ4(1,1,3,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(3)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ2(3,3) *HZ2(0,0)
|
|
$ + HXZ3(3,3,1) *HZ1(0)
|
|
$ + HXZ4(3,3,1,1)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
HYZ4(1,2,0,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(1,1,1)
|
|
$ + HXZ2(3,0) *HZ2(1,1)
|
|
$ + HXZ3(3,0,2) *HZ1(1)
|
|
$ + HXZ4(3,0,2,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,1,1)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(1,2,0,1) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(1,0)
|
|
$ + HXZ3(3,0,2) *HZ1(0)
|
|
$ + HXZ4(3,0,2,3)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(1,2,0,2) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + HXZ3(3,0,2) *HZ1(1)
|
|
$ + HXZ4(3,0,2,0)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(1,2,0,3) =
|
|
$ + 2.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ2(3,0) *HZ2(1,0)
|
|
$ + HXZ3(3,0,2) *HZ1(0)
|
|
$ + HXZ4(3,0,2,1)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(1,2,1,0) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,1,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(0,1)
|
|
$ + HXZ3(3,0,3) *HZ1(1)
|
|
$ + HXZ4(3,0,3,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,2,1,1) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ3(3,0,3) *HZ1(0)
|
|
$ + HXZ4(3,0,3,3)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(1,2,1,2) =
|
|
$ + 4.750000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(0)*Zeta2
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ2(3,0) *HZ2(1,0)
|
|
$ + HXZ3(3,0,3) *HZ1(1)
|
|
$ + HXZ4(3,0,3,0)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(1,2,1,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(3,0)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(3,0)*HZ2(0,0)
|
|
$ + HXZ3(3,0,3) *HZ1(0)
|
|
$ + HXZ4(3,0,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
HYZ4(1,2,2,0) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(3)*HZ3(1,1,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,0)*HZ2(1,1)
|
|
$ + HXZ3(3,0,0) *HZ1(1)
|
|
$ + HXZ4(3,0,0,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(1,2,2,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ - HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ1(3) *HZ3(0,1,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ - HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ2(3,0) *HZ2(0,1)
|
|
$ + HXZ3(3,0,0) *HZ1(0)
|
|
$ + HXZ4(3,0,0,3)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,2,2,2) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(3) *HZ3(1,1,1)
|
|
$ + HXZ2(3,0) *HZ2(1,1)
|
|
$ + HXZ3(3,0,0) *HZ1(1)
|
|
$ + HXZ4(3,0,0,0)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(1,2,2,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(0,1,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(0,1)
|
|
$ + HXZ3(3,0,0) *HZ1(0)
|
|
$ + HXZ4(3,0,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,2,3,0) =
|
|
$ - 2.750000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,1,1)
|
|
$ - HXZ2(3,0) *Zeta2
|
|
$ - HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ2(3,0) *HZ2(0,1)
|
|
$ + HXZ3(3,0,1) *HZ1(1)
|
|
$ + HXZ4(3,0,1,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(1,2,3,1) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,1)
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,0)*HZ2(-1,0)
|
|
$ + HXZ3(3,0,1) *HZ1(0)
|
|
$ + HXZ4(3,0,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(1,2,3,2) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ2(3,0) *Zeta2
|
|
$ + HXZ2(3,0) *HZ2(1,0)
|
|
$ + HXZ3(3,0,1) *HZ1(1)
|
|
$ + HXZ4(3,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(1,2,3,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ2(3,0) *HZ2(0,0)
|
|
$ + HXZ3(3,0,1) *HZ1(0)
|
|
$ + HXZ4(3,0,1,1)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(1,3,0,0) =
|
|
$ - Zeta4
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ - HXZ1(3) *HZ3(0,0,1)
|
|
$ + HXZ1(3) *HZ3(0,1,1)
|
|
$ + HXZ2(3,1) *HZ2(1,1)
|
|
$ + HXZ3(3,1,2) *HZ1(1)
|
|
$ + HXZ4(3,1,2,2)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ4( -1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
HYZ4(1,3,0,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(1,0)
|
|
$ + HXZ3(3,1,2) *HZ1(0)
|
|
$ + HXZ4(3,1,2,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
HYZ4(1,3,0,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + HXZ3(3,1,2) *HZ1(1)
|
|
$ + HXZ4(3,1,2,0)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(1,3,0,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ2(3,1) *HZ2(1,0)
|
|
$ + HXZ3(3,1,2) *HZ1(0)
|
|
$ + HXZ4(3,1,2,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
HYZ4(1,3,1,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(3) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,1)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(0,1)
|
|
$ + HXZ3(3,1,3) *HZ1(1)
|
|
$ + HXZ4(3,1,3,2)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
HYZ4(1,3,1,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ + HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ3(3,1,3) *HZ1(0)
|
|
$ + HXZ4(3,1,3,3)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 3.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - 6.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
HYZ4(1,3,1,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ - HXZ1(3) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(1,-1,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ2(3,1) *HZ2(1,0)
|
|
$ + HXZ3(3,1,3) *HZ1(1)
|
|
$ + HXZ4(3,1,3,0)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
HYZ4(1,3,1,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(3,1)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(3,1)*HZ2(0,0)
|
|
$ + HXZ3(3,1,3) *HZ1(0)
|
|
$ + HXZ4(3,1,3,1)
|
|
$ - 4.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 4.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + 8.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 8.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(1,3,2,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ - HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ1(3) *HZ3(1,0,1)
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,1)*HZ2(1,1)
|
|
$ + HXZ3(3,1,0) *HZ1(1)
|
|
$ + HXZ4(3,1,0,2)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(1,3,2,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,-1,0)
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ - HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ2(3,1) *HZ2(0,1)
|
|
$ + HXZ3(3,1,0) *HZ1(0)
|
|
$ + HXZ4(3,1,0,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
HYZ4(1,3,2,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(1)*Zeta2
|
|
$ + HXZ1(3) *HZ3(1,1,0)
|
|
$ + HXZ2(3,1) *HZ2(1,1)
|
|
$ + HXZ3(3,1,0) *HZ1(1)
|
|
$ + HXZ4(3,1,0,0)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(1,3,2,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(3)*Zeta3
|
|
$ + HXZ1(3) *HZ1(0)*Zeta2
|
|
$ + HXZ1(3) *HZ3(0,1,0)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(0,1)
|
|
$ + HXZ3(3,1,0) *HZ1(0)
|
|
$ + HXZ4(3,1,0,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
HYZ4(1,3,3,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ - HXZ1(3) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(3)*HZ3(0,0,0)
|
|
$ + HXZ1(3) *HZ3(0,0,1)
|
|
$ - HXZ2(3,1) *Zeta2
|
|
$ - HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ2(3,1) *HZ2(0,1)
|
|
$ + HXZ3(3,1,1) *HZ1(1)
|
|
$ + HXZ4(3,1,1,2)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 5.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 8.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
HYZ4(1,3,3,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(3)*HZ3(-1,-1,0)
|
|
$ + HXZ1(3) *HZ3(-1,0,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(3,1)*HZ2(-1,0)
|
|
$ + HXZ3(3,1,1) *HZ1(0)
|
|
$ + HXZ4(3,1,1,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
HYZ4(1,3,3,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(3) *Zeta3
|
|
$ + HXZ1(3) *HZ3(1,0,0)
|
|
$ + HXZ2(3,1) *Zeta2
|
|
$ + HXZ2(3,1) *HZ2(1,0)
|
|
$ + HXZ3(3,1,1) *HZ1(1)
|
|
$ + HXZ4(3,1,1,0)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
HYZ4(1,3,3,3) =
|
|
$ - Zeta4
|
|
$ + HXZ1(3) *HZ3(0,0,0)
|
|
$ + HXZ2(3,1) *HZ2(0,0)
|
|
$ + HXZ3(3,1,1) *HZ1(0)
|
|
$ + HXZ4(3,1,1,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
HYZ4(2,0,0,0) =
|
|
$ - Zeta4
|
|
$ + HXZ1(0) *HZ3(1,1,1)
|
|
$ + HXZ2(0,2) *HZ2(1,1)
|
|
$ + HXZ3(0,2,2) *HZ1(1)
|
|
$ + HXZ4(0,2,2,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + 4.000000000000000d+00*HZ4(1,1,1,1)
|
|
HYZ4(2,0,0,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(1,0)
|
|
$ + HXZ3(0,2,2) *HZ1(0)
|
|
$ + HXZ4(0,2,2,3)
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,0,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + HXZ3(0,2,2) *HZ1(1)
|
|
$ + HXZ4(0,2,2,0)
|
|
$ - HZ1(1) *Zeta3
|
|
HYZ4(2,0,0,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ2(0,2) *HZ2(1,0)
|
|
$ + HXZ3(0,2,2) *HZ1(0)
|
|
$ + HXZ4(0,2,2,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,1,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(0,1)
|
|
$ + HXZ3(0,2,3) *HZ1(1)
|
|
$ + HXZ4(0,2,3,2)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,1)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,0,1,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ3(0,2,3) *HZ1(0)
|
|
$ + HXZ4(0,2,3,3)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(2,0,1,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,1,0)
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ2(0,2) *HZ2(1,0)
|
|
$ + HXZ3(0,2,3) *HZ1(1)
|
|
$ + HXZ4(0,2,3,0)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,1)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,1,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(-1,1,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,0,0)
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(0,2)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(0,2)*HZ2(0,0)
|
|
$ + HXZ3(0,2,3) *HZ1(0)
|
|
$ + HXZ4(0,2,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
HYZ4(2,0,2,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,2)*HZ2(1,1)
|
|
$ + HXZ3(0,2,0) *HZ1(1)
|
|
$ + HXZ4(0,2,0,2)
|
|
$ + 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
HYZ4(2,0,2,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ1(0) *HZ3(1,1,0)
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ - HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ2(0,2) *HZ2(0,1)
|
|
$ + HXZ3(0,2,0) *HZ1(0)
|
|
$ + HXZ4(0,2,0,3)
|
|
$ - 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,2,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ2(0,2) *HZ2(1,1)
|
|
$ + HXZ3(0,2,0) *HZ1(1)
|
|
$ + HXZ4(0,2,0,0)
|
|
$ - HZ1(1) *Zeta3
|
|
HYZ4(2,0,2,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ - HXZ1(0) *HZ3(1,1,0)
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(0,1)
|
|
$ + HXZ3(0,2,0) *HZ1(0)
|
|
$ + HXZ4(0,2,0,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,3,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ - HXZ2(0,2) *Zeta2
|
|
$ - HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ2(0,2) *HZ2(0,1)
|
|
$ + HXZ3(0,2,1) *HZ1(1)
|
|
$ + HXZ4(0,2,1,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,0,3,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,-1,0)
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,2)*HZ2(-1,0)
|
|
$ + HXZ3(0,2,1) *HZ1(0)
|
|
$ + HXZ4(0,2,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(2,0,3,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,1,0)
|
|
$ + HXZ2(0,2) *Zeta2
|
|
$ + HXZ2(0,2) *HZ2(1,0)
|
|
$ + HXZ3(0,2,1) *HZ1(1)
|
|
$ + HXZ4(0,2,1,0)
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,0,1)
|
|
$ + 3.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(2,0,3,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ2(0,2) *HZ2(0,0)
|
|
$ + HXZ3(0,2,1) *HZ1(0)
|
|
$ + HXZ4(0,2,1,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(2,1,0,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(0,1,1)
|
|
$ + HXZ2(0,3) *HZ2(1,1)
|
|
$ + HXZ3(0,3,2) *HZ1(1)
|
|
$ + HXZ4(0,3,2,2)
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,0,1,1)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,1)
|
|
HYZ4(2,1,0,1) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(1,0)
|
|
$ + HXZ3(0,3,2) *HZ1(0)
|
|
$ + HXZ4(0,3,2,3)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(2,1,0,2) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ - HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + HXZ3(0,3,2) *HZ1(1)
|
|
$ + HXZ4(0,3,2,0)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
HYZ4(2,1,0,3) =
|
|
$ - 2.750000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ2(0,3) *HZ2(1,0)
|
|
$ + HXZ3(0,3,2) *HZ1(0)
|
|
$ + HXZ4(0,3,2,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(2,1,1,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(0,1)
|
|
$ + HXZ3(0,3,3) *HZ1(1)
|
|
$ + HXZ4(0,3,3,2)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
HYZ4(2,1,1,1) =
|
|
$ - Zeta4
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ3(0,3,3) *HZ1(0)
|
|
$ + HXZ4(0,3,3,3)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
HYZ4(2,1,1,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ2(0,3) *HZ2(1,0)
|
|
$ + HXZ3(0,3,3) *HZ1(1)
|
|
$ + HXZ4(0,3,3,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
HYZ4(2,1,1,3) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(0)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(0,3)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(0,3)*HZ2(0,0)
|
|
$ + HXZ3(0,3,3) *HZ1(0)
|
|
$ + HXZ4(0,3,3,1)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 5.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 8.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
HYZ4(2,1,2,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,3)*HZ2(1,1)
|
|
$ + HXZ3(0,3,0) *HZ1(1)
|
|
$ + HXZ4(0,3,0,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,1,2,1) =
|
|
$ - 2.250000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ - HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ2(0,3) *HZ2(0,1)
|
|
$ + HXZ3(0,3,0) *HZ1(0)
|
|
$ + HXZ4(0,3,0,3)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(2,1,2,2) =
|
|
$ - 5.250000000000000d+00*Zeta4
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,3) *HZ2(1,1)
|
|
$ + HXZ3(0,3,0) *HZ1(1)
|
|
$ + HXZ4(0,3,0,0)
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,1,2,3) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(0,1)
|
|
$ + HXZ3(0,3,0) *HZ1(0)
|
|
$ + HXZ4(0,3,0,1)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 8.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(2,1,3,0) =
|
|
$ + 2.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,1)
|
|
$ - HXZ2(0,3) *Zeta2
|
|
$ - HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ2(0,3) *HZ2(0,1)
|
|
$ + HXZ3(0,3,1) *HZ1(1)
|
|
$ + HXZ4(0,3,1,2)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,1,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,1,1)
|
|
HYZ4(2,1,3,1) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,3)*HZ2(-1,0)
|
|
$ + HXZ3(0,3,1) *HZ1(0)
|
|
$ + HXZ4(0,3,1,3)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(2,1,3,2) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(-1,1,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,0,0)
|
|
$ + HXZ2(0,3) *Zeta2
|
|
$ + HXZ2(0,3) *HZ2(1,0)
|
|
$ + HXZ3(0,3,1) *HZ1(1)
|
|
$ + HXZ4(0,3,1,0)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - HZ4( -1,0,0,1)
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,0,1)
|
|
HYZ4(2,1,3,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(0)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ2(0,3) *HZ2(0,0)
|
|
$ + HXZ3(0,3,1) *HZ1(0)
|
|
$ + HXZ4(0,3,1,1)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 6.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
HYZ4(2,2,0,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(1,1,1)
|
|
$ + HXZ2(0,0) *HZ2(1,1)
|
|
$ + HXZ3(0,0,2) *HZ1(1)
|
|
$ + HXZ4(0,0,2,2)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(1,1)*Zeta2
|
|
$ + 6.000000000000000d+00*HZ4(1,1,1,1)
|
|
HYZ4(2,2,0,1) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(1,0)
|
|
$ + HXZ3(0,0,2) *HZ1(0)
|
|
$ + HXZ4(0,0,2,3)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(2,2,0,2) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + HXZ3(0,0,2) *HZ1(1)
|
|
$ + HXZ4(0,0,2,0)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
HYZ4(2,2,0,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ2(0,0) *HZ2(1,0)
|
|
$ + HXZ3(0,0,2) *HZ1(0)
|
|
$ + HXZ4(0,0,2,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(0,0,1,1)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
$ + HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(2,2,1,0) =
|
|
$ - Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,1,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(0,1)
|
|
$ + HXZ3(0,0,3) *HZ1(1)
|
|
$ + HXZ4(0,0,3,2)
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,1)
|
|
HYZ4(2,2,1,1) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ3(0,0,3) *HZ1(0)
|
|
$ + HXZ4(0,0,3,3)
|
|
$ + HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + HZ4(0,0,1,1)
|
|
HYZ4(2,2,1,2) =
|
|
$ + 5.250000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(0)*Zeta2
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ2(0,0) *HZ2(1,0)
|
|
$ + HXZ3(0,0,3) *HZ1(1)
|
|
$ + HXZ4(0,0,3,0)
|
|
$ + 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,0,1,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ + HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
HYZ4(2,2,1,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(0,0)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(0,0)*HZ2(0,0)
|
|
$ + HXZ3(0,0,3) *HZ1(0)
|
|
$ + HXZ4(0,0,3,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ4( -1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
HYZ4(2,2,2,0) =
|
|
$ - Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(0)*HZ3(1,1,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,0)*HZ2(1,1)
|
|
$ + HXZ3(0,0,0) *HZ1(1)
|
|
$ + HXZ4(0,0,0,2)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + 4.000000000000000d+00*HZ4(1,1,1,1)
|
|
HYZ4(2,2,2,1) =
|
|
$ - 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ - HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ1(0) *HZ3(0,1,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ - HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ2(0,0) *HZ2(0,1)
|
|
$ + HXZ3(0,0,0) *HZ1(0)
|
|
$ + HXZ4(0,0,0,3)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - HZ4(0,0,1,1)
|
|
$ + HZ4(0,1,1,1)
|
|
HYZ4(2,2,2,2) =
|
|
$ + HXZ1(0) *HZ3(1,1,1)
|
|
$ + HXZ2(0,0) *HZ2(1,1)
|
|
$ + HXZ3(0,0,0) *HZ1(1)
|
|
$ + HXZ4(0,0,0,0)
|
|
$ + HZ4(1,1,1,1)
|
|
HYZ4(2,2,2,3) =
|
|
$ - Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(0,1,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(0,1)
|
|
$ + HXZ3(0,0,0) *HZ1(0)
|
|
$ + HXZ4(0,0,0,1)
|
|
$ + HZ4(0,1,1,1)
|
|
HYZ4(2,2,3,0) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,1,1)
|
|
$ - HXZ2(0,0) *Zeta2
|
|
$ - HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ2(0,0) *HZ2(0,1)
|
|
$ + HXZ3(0,0,1) *HZ1(1)
|
|
$ + HXZ4(0,0,1,2)
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,0,1,1)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,1)
|
|
HYZ4(2,2,3,1) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,1)
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,0)*HZ2(-1,0)
|
|
$ + HXZ3(0,0,1) *HZ1(0)
|
|
$ + HXZ4(0,0,1,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,1)
|
|
HYZ4(2,2,3,2) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ2(0,0) *Zeta2
|
|
$ + HXZ2(0,0) *HZ2(1,0)
|
|
$ + HXZ3(0,0,1) *HZ1(1)
|
|
$ + HXZ4(0,0,1,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(1,0,1,1)
|
|
HYZ4(2,2,3,3) =
|
|
$ - 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ2(0,0) *HZ2(0,0)
|
|
$ + HXZ3(0,0,1) *HZ1(0)
|
|
$ + HXZ4(0,0,1,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,0,1,1)
|
|
HYZ4(2,3,0,0) =
|
|
$ - Zeta4
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ - HXZ1(0) *HZ3(0,0,1)
|
|
$ + HXZ1(0) *HZ3(0,1,1)
|
|
$ + HXZ2(0,1) *HZ2(1,1)
|
|
$ + HXZ3(0,1,2) *HZ1(1)
|
|
$ + HXZ4(0,1,2,2)
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,1)
|
|
HYZ4(2,3,0,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(1,0)
|
|
$ + HXZ3(0,1,2) *HZ1(0)
|
|
$ + HXZ4(0,1,2,3)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(2,3,0,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + HXZ3(0,1,2) *HZ1(1)
|
|
$ + HXZ4(0,1,2,0)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(1,1,0,1)
|
|
HYZ4(2,3,0,3) =
|
|
$ - 3.500000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ2(0,1) *HZ2(1,0)
|
|
$ + HXZ3(0,1,2) *HZ1(0)
|
|
$ + HXZ4(0,1,2,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(2,3,1,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(0) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,1)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(0,1)
|
|
$ + HXZ3(0,1,3) *HZ1(1)
|
|
$ + HXZ4(0,1,3,2)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(-1,0,1,1)
|
|
HYZ4(2,3,1,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ + HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ3(0,1,3) *HZ1(0)
|
|
$ + HXZ4(0,1,3,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
HYZ4(2,3,1,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ - HXZ1(0) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(1,-1,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ2(0,1) *HZ2(1,0)
|
|
$ + HXZ3(0,1,3) *HZ1(1)
|
|
$ + HXZ4(0,1,3,0)
|
|
$ + 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
HYZ4(2,3,1,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(0,1)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(0,1)*HZ2(0,0)
|
|
$ + HXZ3(0,1,3) *HZ1(0)
|
|
$ + HXZ4(0,1,3,1)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
HYZ4(2,3,2,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ - HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ1(0) *HZ3(1,0,1)
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,1)*HZ2(1,1)
|
|
$ + HXZ3(0,1,0) *HZ1(1)
|
|
$ + HXZ4(0,1,0,2)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,1)
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,3,2,1) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,-1,0)
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ - HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ2(0,1) *HZ2(0,1)
|
|
$ + HXZ3(0,1,0) *HZ1(0)
|
|
$ + HXZ4(0,1,0,3)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(2,3,2,2) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(1)*Zeta2
|
|
$ + HXZ1(0) *HZ3(1,1,0)
|
|
$ + HXZ2(0,1) *HZ2(1,1)
|
|
$ + HXZ3(0,1,0) *HZ1(1)
|
|
$ + HXZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,0,1)
|
|
HYZ4(2,3,2,3) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(0)*Zeta3
|
|
$ + HXZ1(0) *HZ1(0)*Zeta2
|
|
$ + HXZ1(0) *HZ3(0,1,0)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(0,1)
|
|
$ + HXZ3(0,1,0) *HZ1(0)
|
|
$ + HXZ4(0,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(2,3,3,0) =
|
|
$ + 1.500000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ - HXZ1(0) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(0)*HZ3(0,0,0)
|
|
$ + HXZ1(0) *HZ3(0,0,1)
|
|
$ - HXZ2(0,1) *Zeta2
|
|
$ - HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ2(0,1) *HZ2(0,1)
|
|
$ + HXZ3(0,1,1) *HZ1(1)
|
|
$ + HXZ4(0,1,1,2)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,1)
|
|
HYZ4(2,3,3,1) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(0)*HZ3(-1,-1,0)
|
|
$ + HXZ1(0) *HZ3(-1,0,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(0,1)*HZ2(-1,0)
|
|
$ + HXZ3(0,1,1) *HZ1(0)
|
|
$ + HXZ4(0,1,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + HZ4( -1,0,0,1)
|
|
HYZ4(2,3,3,2) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(0) *Zeta3
|
|
$ + HXZ1(0) *HZ3(1,0,0)
|
|
$ + HXZ2(0,1) *Zeta2
|
|
$ + HXZ2(0,1) *HZ2(1,0)
|
|
$ + HXZ3(0,1,1) *HZ1(1)
|
|
$ + HXZ4(0,1,1,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,0,1)
|
|
HYZ4(2,3,3,3) =
|
|
$ - Zeta4
|
|
$ + HXZ1(0) *HZ3(0,0,0)
|
|
$ + HXZ2(0,1) *HZ2(0,0)
|
|
$ + HXZ3(0,1,1) *HZ1(0)
|
|
$ + HXZ4(0,1,1,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,1)
|
|
HYZ4(3,0,0,0) =
|
|
$ - 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(1) *HZ3(1,1,1)
|
|
$ + HXZ2(1,2) *HZ2(1,1)
|
|
$ + HXZ3(1,2,2) *HZ1(1)
|
|
$ + HXZ4(1,2,2,2)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - HZ4(0,0,1,1)
|
|
$ + HZ4(0,1,1,1)
|
|
HYZ4(3,0,0,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(1,0)
|
|
$ + HXZ3(1,2,2) *HZ1(0)
|
|
$ + HXZ4(1,2,2,3)
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,0,0,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + HXZ3(1,2,2) *HZ1(1)
|
|
$ + HXZ4(1,2,2,0)
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(3,0,0,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ2(1,2) *HZ2(1,0)
|
|
$ + HXZ3(1,2,2) *HZ1(0)
|
|
$ + HXZ4(1,2,2,1)
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,0,1,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(0,1)
|
|
$ + HXZ3(1,2,3) *HZ1(1)
|
|
$ + HXZ4(1,2,3,2)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(3,0,1,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ3(1,2,3) *HZ1(0)
|
|
$ + HXZ4(1,2,3,3)
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(3,0,1,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,1,0)
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ2(1,2) *HZ2(1,0)
|
|
$ + HXZ3(1,2,3) *HZ1(1)
|
|
$ + HXZ4(1,2,3,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(3,0,1,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(-1,1,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,0,0)
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(1,2)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(1,2)*HZ2(0,0)
|
|
$ + HXZ3(1,2,3) *HZ1(0)
|
|
$ + HXZ4(1,2,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - HZ4( -1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,0,0)
|
|
HYZ4(3,0,2,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,2)*HZ2(1,1)
|
|
$ + HXZ3(1,2,0) *HZ1(1)
|
|
$ + HXZ4(1,2,0,2)
|
|
$ - 3.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + HZ4(1,1,0,0)
|
|
$ - HZ4(1,1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(3,0,2,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ1(1) *HZ3(1,1,0)
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ - HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ2(1,2) *HZ2(0,1)
|
|
$ + HXZ3(1,2,0) *HZ1(0)
|
|
$ + HXZ4(1,2,0,3)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(3,0,2,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ2(1,2) *HZ2(1,1)
|
|
$ + HXZ3(1,2,0) *HZ1(1)
|
|
$ + HXZ4(1,2,0,0)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(3,0,2,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ - HXZ1(1) *HZ3(1,1,0)
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(0,1)
|
|
$ + HXZ3(1,2,0) *HZ1(0)
|
|
$ + HXZ4(1,2,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ - HZ4(1,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(3,0,3,0) =
|
|
$ - 2.250000000000000d+00*Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ - HXZ2(1,2) *Zeta2
|
|
$ - HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ2(1,2) *HZ2(0,1)
|
|
$ + HXZ3(1,2,1) *HZ1(1)
|
|
$ + HXZ4(1,2,1,2)
|
|
$ - 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ - 3.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
HYZ4(3,0,3,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,-1,0)
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,2)*HZ2(-1,0)
|
|
$ + HXZ3(1,2,1) *HZ1(0)
|
|
$ + HXZ4(1,2,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
HYZ4(3,0,3,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,1,0)
|
|
$ + HXZ2(1,2) *Zeta2
|
|
$ + HXZ2(1,2) *HZ2(1,0)
|
|
$ + HXZ3(1,2,1) *HZ1(1)
|
|
$ + HXZ4(1,2,1,0)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(0,1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,0,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(3,0,3,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ2(1,2) *HZ2(0,0)
|
|
$ + HXZ3(1,2,1) *HZ1(0)
|
|
$ + HXZ4(1,2,1,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(3,1,0,0) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(0,1,1)
|
|
$ + HXZ2(1,3) *HZ2(1,1)
|
|
$ + HXZ3(1,3,2) *HZ1(1)
|
|
$ + HXZ4(1,3,2,2)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,1)
|
|
HYZ4(3,1,0,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(1,0)
|
|
$ + HXZ3(1,3,2) *HZ1(0)
|
|
$ + HXZ4(1,3,2,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
HYZ4(3,1,0,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ - HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + HXZ3(1,3,2) *HZ1(1)
|
|
$ + HXZ4(1,3,2,0)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4( -1,0,1,0)
|
|
$ - HZ4( -1,1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(1, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(3,1,0,3) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ2(1,3) *HZ2(1,0)
|
|
$ + HXZ3(1,3,2) *HZ1(0)
|
|
$ + HXZ4(1,3,2,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(3,1,1,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(0,1)
|
|
$ + HXZ3(1,3,3) *HZ1(1)
|
|
$ + HXZ4(1,3,3,2)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + HZ4( -1,0,0,1)
|
|
HYZ4(3,1,1,1) =
|
|
$ + Zeta4
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ3(1,3,3) *HZ1(0)
|
|
$ + HXZ4(1,3,3,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
HYZ4(3,1,1,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ2(1,3) *HZ2(1,0)
|
|
$ + HXZ3(1,3,3) *HZ1(1)
|
|
$ + HXZ4(1,3,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
HYZ4(3,1,1,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(1)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(1,3)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(1,3)*HZ2(0,0)
|
|
$ + HXZ3(1,3,3) *HZ1(0)
|
|
$ + HXZ4(1,3,3,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
HYZ4(3,1,2,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,3)*HZ2(1,1)
|
|
$ + HXZ3(1,3,0) *HZ1(1)
|
|
$ + HXZ4(1,3,0,2)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ + HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,0,1)
|
|
$ - HZ4(0,1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(3,1,2,1) =
|
|
$ + Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ - HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ2(1,3) *HZ2(0,1)
|
|
$ + HXZ3(1,3,0) *HZ1(0)
|
|
$ + HXZ4(1,3,0,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
HYZ4(3,1,2,2) =
|
|
$ + Zeta4
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,3) *HZ2(1,1)
|
|
$ + HXZ3(1,3,0) *HZ1(1)
|
|
$ + HXZ4(1,3,0,0)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4( -1,0,0,0)
|
|
$ + HZ4( -1,0,1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ - HZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,-1,0)
|
|
HYZ4(3,1,2,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(0,1)
|
|
$ + HXZ3(1,3,0) *HZ1(0)
|
|
$ + HXZ4(1,3,0,1)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
HYZ4(3,1,3,0) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,1)
|
|
$ - HXZ2(1,3) *Zeta2
|
|
$ - HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ2(1,3) *HZ2(0,1)
|
|
$ + HXZ3(1,3,1) *HZ1(1)
|
|
$ + HXZ4(1,3,1,2)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,0,1)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 3.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(3,1,3,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,3)*HZ2(-1,0)
|
|
$ + HXZ3(1,3,1) *HZ1(0)
|
|
$ + HXZ4(1,3,1,3)
|
|
$ + 4.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 8.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ + 4.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
HYZ4(3,1,3,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(-1,1,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,0,0)
|
|
$ + HXZ2(1,3) *Zeta2
|
|
$ + HXZ2(1,3) *HZ2(1,0)
|
|
$ + HXZ3(1,3,1) *HZ1(1)
|
|
$ + HXZ4(1,3,1,0)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(1,-1)*Zeta2
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
HYZ4(3,1,3,3) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(1)*HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ2(1,3) *HZ2(0,0)
|
|
$ + HXZ3(1,3,1) *HZ1(0)
|
|
$ + HXZ4(1,3,1,1)
|
|
$ - 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 3.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(-1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 6.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ - 5.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 3.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
HYZ4(3,2,0,0) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(1,1,1)
|
|
$ + HXZ2(1,0) *HZ2(1,1)
|
|
$ + HXZ3(1,0,2) *HZ1(1)
|
|
$ + HXZ4(1,0,2,2)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,0,0)
|
|
$ - HZ4(1,0,0,1)
|
|
$ + HZ4(1,0,1,1)
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(3,2,0,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(1,0)
|
|
$ + HXZ3(1,0,2) *HZ1(0)
|
|
$ + HXZ4(1,0,2,3)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - 4.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(3,2,0,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + HXZ3(1,0,2) *HZ1(1)
|
|
$ + HXZ4(1,0,2,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,0,1,0)
|
|
$ - HZ4(1,1,1,0)
|
|
HYZ4(3,2,0,3) =
|
|
$ + 5.500000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ2(1,0) *HZ2(1,0)
|
|
$ + HXZ3(1,0,2) *HZ1(0)
|
|
$ + HXZ4(1,0,2,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + 4.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(1,0)*Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,0,1,0)
|
|
HYZ4(3,2,1,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,1,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(0,1)
|
|
$ + HXZ3(1,0,3) *HZ1(1)
|
|
$ + HXZ4(1,0,3,2)
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,1)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,2,1,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ3(1,0,3) *HZ1(0)
|
|
$ + HXZ4(1,0,3,3)
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(3,2,1,2) =
|
|
$ + Zeta4
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(0)*Zeta2
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ2(1,0) *HZ2(1,0)
|
|
$ + HXZ3(1,0,3) *HZ1(1)
|
|
$ + HXZ4(1,0,3,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,1,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(1,0,-1,0)
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(3,2,1,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ - 3.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(1,0)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(1,0)*HZ2(0,0)
|
|
$ + HXZ3(1,0,3) *HZ1(0)
|
|
$ + HXZ4(1,0,3,1)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ2(0,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
$ + 4.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,0,0)
|
|
$ - 4.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,0,1,0)
|
|
HYZ4(3,2,2,0) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + 3.000000000000000d+00*HXZ1(1)*HZ3(1,1,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,0)*HZ2(1,1)
|
|
$ + HXZ3(1,0,0) *HZ1(1)
|
|
$ + HXZ4(1,0,0,2)
|
|
$ + HZ1(1) *Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ - HZ4(1,1,0,0)
|
|
$ + HZ4(1,1,0,1)
|
|
$ + 2.000000000000000d+00*HZ4(1,1,1,0)
|
|
HYZ4(3,2,2,1) =
|
|
$ + Zeta4
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ - HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ1(1) *HZ3(0,1,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ - HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ2(1,0) *HZ2(0,1)
|
|
$ + HXZ3(1,0,0) *HZ1(0)
|
|
$ + HXZ4(1,0,0,3)
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ - HZ4(0,0,1,0)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,2,2,2) =
|
|
$ + Zeta4
|
|
$ + HXZ1(1) *HZ3(1,1,1)
|
|
$ + HXZ2(1,0) *HZ2(1,1)
|
|
$ + HXZ3(1,0,0) *HZ1(1)
|
|
$ + HXZ4(1,0,0,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ2(1,1) *Zeta2
|
|
$ + HZ4(1,1,1,0)
|
|
HYZ4(3,2,2,3) =
|
|
$ - 1.250000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(0,1,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(0,1)
|
|
$ + HXZ3(1,0,0) *HZ1(0)
|
|
$ + HXZ4(1,0,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ2(0,1) *Zeta2
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,2,3,0) =
|
|
$ + 5.000000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ3(0,0,1)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,1,1)
|
|
$ - HXZ2(1,0) *Zeta2
|
|
$ - HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ2(1,0) *HZ2(0,1)
|
|
$ + HXZ3(1,0,1) *HZ1(1)
|
|
$ + HXZ4(1,0,1,2)
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + HZ4(0,1,0,1)
|
|
$ + HZ4(0,1,1,0)
|
|
HYZ4(3,2,3,1) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,1)
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,0)*HZ2(-1,0)
|
|
$ + HXZ3(1,0,1) *HZ1(0)
|
|
$ + HXZ4(1,0,1,3)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,1,0)
|
|
HYZ4(3,2,3,2) =
|
|
$ + 7.500000000000000d-01*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ2(1,0) *Zeta2
|
|
$ + HXZ2(1,0) *HZ2(1,0)
|
|
$ + HXZ3(1,0,1) *HZ1(1)
|
|
$ + HXZ4(1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ + HZ2(1,0) *Zeta2
|
|
$ + HZ4(1,0,1,0)
|
|
HYZ4(3,2,3,3) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ2(1,0) *HZ2(0,0)
|
|
$ + HXZ3(1,0,1) *HZ1(0)
|
|
$ + HXZ4(1,0,1,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(3,3,0,0) =
|
|
$ + 1.750000000000000d+00*Zeta4
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ - HXZ1(1) *HZ3(0,0,1)
|
|
$ + HXZ1(1) *HZ3(0,1,1)
|
|
$ + HXZ2(1,1) *HZ2(1,1)
|
|
$ + HXZ3(1,1,2) *HZ1(1)
|
|
$ + HXZ4(1,1,2,2)
|
|
$ + HZ1(0) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(0,0)*Zeta2
|
|
$ + 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,0,1)
|
|
$ + HZ4(0,0,1,1)
|
|
HYZ4(3,3,0,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(1,0)
|
|
$ + HXZ3(1,1,2) *HZ1(0)
|
|
$ + HXZ4(1,1,2,3)
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ - 2.000000000000000d+00*HZ4(0,0,-1,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(3,3,0,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + HXZ3(1,1,2) *HZ1(1)
|
|
$ + HXZ4(1,1,2,0)
|
|
$ + HZ1(1) *Zeta3
|
|
$ - HZ2(0,1) *Zeta2
|
|
$ - HZ4(0,0,1,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ - HZ4(0,1,1,0)
|
|
$ - HZ4(1,1,0,0)
|
|
HYZ4(3,3,0,3) =
|
|
$ + 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ2(1,1) *HZ2(1,0)
|
|
$ + HXZ3(1,1,2) *HZ1(0)
|
|
$ + HXZ4(1,1,2,1)
|
|
$ + 2.000000000000000d+00*HZ1(0)*Zeta3
|
|
$ + HZ2(0,0) *Zeta2
|
|
$ + HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,1,0)
|
|
HYZ4(3,3,1,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ - HXZ1(1) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,1)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(0,1)
|
|
$ + HXZ3(1,1,3) *HZ1(1)
|
|
$ + HXZ4(1,1,3,2)
|
|
$ + HZ1( -1)*Zeta3
|
|
$ - 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ - HZ2( -1,0)*Zeta2
|
|
$ - HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,1)
|
|
$ - 2.000000000000000d+00*HZ4(-1,0,0,0)
|
|
$ + HZ4( -1,0,0,1)
|
|
HYZ4(3,3,1,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ + HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ3(1,1,3) *HZ1(0)
|
|
$ + HXZ4(1,1,3,3)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + 4.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,0,0)
|
|
HYZ4(3,3,1,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ - HXZ1(1) *HZ3(0,1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(1,-1,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ2(1,1) *HZ2(1,0)
|
|
$ + HXZ3(1,1,3) *HZ1(1)
|
|
$ + HXZ4(1,1,3,0)
|
|
$ - 2.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(1) *Zeta3
|
|
$ + 2.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,1)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ + HZ2(1, -1)*Zeta2
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ - HZ4( -1,0,1,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,1,-1,0)
|
|
$ + HZ4( -1,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
$ - HZ4(0,1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(1,-1,-1,0)
|
|
$ + HZ4(1, -1,0,0)
|
|
HYZ4(3,3,1,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ1(-1)*Zeta2
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - 4.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,0,0)
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ - 2.000000000000000d+00*HXZ2(1,1)*HZ2(-1,0)
|
|
$ + 2.000000000000000d+00*HXZ2(1,1)*HZ2(0,0)
|
|
$ + HXZ3(1,1,3) *HZ1(0)
|
|
$ + HXZ4(1,1,3,1)
|
|
$ + 3.000000000000000d+00*HZ1(-1)*Zeta3
|
|
$ - HZ1(0) *Zeta3
|
|
$ - 3.000000000000000d+00*HZ2(-1,-1)*Zeta2
|
|
$ + HZ2( -1,0)*Zeta2
|
|
$ + HZ2(0, -1)*Zeta2
|
|
$ - 6.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + 2.000000000000000d+00*HZ4(-1,0,-1,0)
|
|
$ + 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ + HZ4(0, -1,0,0)
|
|
HYZ4(3,3,2,0) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ - HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ1(1) *HZ3(1,0,1)
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,1)*HZ2(1,1)
|
|
$ + HXZ3(1,1,0) *HZ1(1)
|
|
$ + HXZ4(1,1,0,2)
|
|
$ - 2.000000000000000d+00*HZ1(1)*Zeta3
|
|
$ - HZ2(1,0) *Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(1,0,0,0)
|
|
$ + HZ4(1,0,0,1)
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(3,3,2,1) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,-1,0)
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ - HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ2(1,1) *HZ2(0,1)
|
|
$ + HXZ3(1,1,0) *HZ1(0)
|
|
$ + HXZ4(1,1,0,3)
|
|
$ - HZ2(0, -1)*Zeta2
|
|
$ - 2.000000000000000d+00*HZ4(0,-1,-1,0)
|
|
$ - HZ4(0, -1,0,0)
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(3,3,2,2) =
|
|
$ + 2.500000000000000d-01*Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(1)*Zeta2
|
|
$ + HXZ1(1) *HZ3(1,1,0)
|
|
$ + HXZ2(1,1) *HZ2(1,1)
|
|
$ + HXZ3(1,1,0) *HZ1(1)
|
|
$ + HXZ4(1,1,0,0)
|
|
$ - HZ1(1) *Zeta3
|
|
$ + HZ4(1,1,0,0)
|
|
HYZ4(3,3,2,3) =
|
|
$ - 3.000000000000000d+00*Zeta4
|
|
$ + 2.000000000000000d+00*HXZ1(1)*Zeta3
|
|
$ + HXZ1(1) *HZ1(0)*Zeta2
|
|
$ + HXZ1(1) *HZ3(0,1,0)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(0,1)
|
|
$ + HXZ3(1,1,0) *HZ1(0)
|
|
$ + HXZ4(1,1,0,1)
|
|
$ - HZ1(0) *Zeta3
|
|
$ + HZ4(0,1,0,0)
|
|
HYZ4(3,3,3,0) =
|
|
$ - Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ - HXZ1(1) *HZ1(0)*Zeta2
|
|
$ - 2.000000000000000d+00*HXZ1(1)*HZ3(0,0,0)
|
|
$ + HXZ1(1) *HZ3(0,0,1)
|
|
$ - HXZ2(1,1) *Zeta2
|
|
$ - HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ2(1,1) *HZ2(0,1)
|
|
$ + HXZ3(1,1,1) *HZ1(1)
|
|
$ + HXZ4(1,1,1,2)
|
|
$ - HZ1(0) *Zeta3
|
|
$ - HZ2(0,0) *Zeta2
|
|
$ - 3.000000000000000d+00*HZ4(0,0,0,0)
|
|
$ + HZ4(0,0,0,1)
|
|
HYZ4(3,3,3,1) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ1(-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HXZ1(1)*HZ3(-1,-1,0)
|
|
$ + HXZ1(1) *HZ3(-1,0,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + 2.000000000000000d+00*HXZ2(1,1)*HZ2(-1,0)
|
|
$ + HXZ3(1,1,1) *HZ1(0)
|
|
$ + HXZ4(1,1,1,3)
|
|
$ - HZ1( -1)*Zeta3
|
|
$ + HZ2( -1,-1)*Zeta2
|
|
$ + 2.000000000000000d+00*HZ4(-1,-1,-1,0)
|
|
$ + HZ4( -1,-1,0,0)
|
|
$ + HZ4( -1,0,0,0)
|
|
HYZ4(3,3,3,2) =
|
|
$ + Zeta4
|
|
$ - HXZ1(1) *Zeta3
|
|
$ + HXZ1(1) *HZ3(1,0,0)
|
|
$ + HXZ2(1,1) *Zeta2
|
|
$ + HXZ2(1,1) *HZ2(1,0)
|
|
$ + HXZ3(1,1,1) *HZ1(1)
|
|
$ + HXZ4(1,1,1,0)
|
|
$ + HZ4(1,0,0,0)
|
|
HYZ4(3,3,3,3) =
|
|
$ + HXZ1(1) *HZ3(0,0,0)
|
|
$ + HXZ2(1,1) *HZ2(0,0)
|
|
$ + HXZ3(1,1,1) *HZ1(0)
|
|
$ + HXZ4(1,1,1,1)
|
|
$ + HZ4(0,0,0,0)
|
|
return
|
|
end
|
|
|
|
|
|
function dlogone(x)
|
|
*********************************************************************
|
|
***** evaluates log(1+x) using the expansion *****
|
|
***** of the logarithm around 1 *****
|
|
***** avoids rounding errors from dlog(1d0+x) *****
|
|
*********************************************************************
|
|
** 1+x = (1+ep)/(1-ep), ep = x/(2+x)
|
|
** log(1+x) = log((1+x)/(1-x)) = 2*ep*(1+ep^2/3+ep^4/5+.....)
|
|
** at x= -1/2, ep = -1/3
|
|
** ep2 = 1/9, ep2^16 = 5.4 x 10^(-16)
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
real(dp):: dlogone
|
|
real(dp):: x,ep,e2
|
|
ep = x/(2.d0+x)
|
|
e2 = ep*ep
|
|
dlogone =2*ep*(1+e2*(1.d0/3+e2*(1.d0/5+e2*(1.d0/ 7+e2*(1.d0/ 9
|
|
$ +e2*(1.d0/11+e2*(1.d0/13+e2*(1.d0/15+e2*(1.d0/17
|
|
$ +e2*(1.d0/19+e2*(1.d0/21+e2*(1.d0/23+e2*(1.d0/25
|
|
$ +e2*(1.d0/27+e2*(1.d0/29+e2*(1.d0/31+e2*(1.d0/33
|
|
$ )))))))))))))))))
|
|
return
|
|
end
|
|
|
|
subroutine makeexpar(y,z)
|
|
*********************************************************************
|
|
***** makeexpar(y,z) creates the expansion parameters *****
|
|
***** for the evaluation of the coefficients *****
|
|
***** tz#n: n-th Chebyshev polynomial in 2*z-1 *****
|
|
***** u = 4/3*H(1;z) *****
|
|
***** v = 4/3*H(-1;z) *****
|
|
***** tu#n: n-th Chebyshev polynomial in 2*u-1 *****
|
|
***** tv#n: n-th Chebyshev polynomial in 2*v-1 *****
|
|
***** zm#n: (1-z)^n *****
|
|
***** r = 4/3*H(1;y) *****
|
|
***** s = 4/3*H(2;y) *****
|
|
***** s#n: s^n *****
|
|
***** r#n: s^n *****
|
|
***** b#n: (s/z)^n *****
|
|
*********************************************************************
|
|
implicit none
|
|
include 'src/Inc/types.f'
|
|
real(dp):: dlogone
|
|
real(dp):: y,z
|
|
real(dp):: u,v
|
|
real(dp)::
|
|
$ tz01,tz02,tz03,tz04,tz05,tz06,tz07,tz08,tz09,tz10,
|
|
$ tz11,tz12,tz13,tz14,tz15,tz16,tz17,tz18,tz19,tz20,tz21
|
|
real(dp)::
|
|
$ tu01,tu02,tu03,tu04,tu05,tu06,tu07,tu08,tu09,tu10,
|
|
$ tu11,tu12,tu13,tu14,tu15,tu16,tu17,tu18,tu19,tu20,tu21
|
|
real(dp)::
|
|
$ tv01,tv02,tv03,tv04,tv05,tv06,tv07,tv08,tv09,tv10,
|
|
$ tv11,tv12,tv13,tv14,tv15,tv16,tv17,tv18,tv19,tv20,tv21
|
|
real(dp)::
|
|
$ zm01,zm02,zm03,zm04,zm05,zm06,zm07,zm08,zm09,zm10,
|
|
$ zm11,zm12,zm13,zm14,zm15,zm16,zm17,zm18,zm19,zm20,zm21
|
|
real(dp)::
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
real(dp)::
|
|
$ r01,r02,r03,r04,r05,r06,r07,r08,r09,r10,
|
|
$ r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22
|
|
real(dp)::
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
|
|
common /com_tdhpl_tpz/
|
|
$ tz01,tz02,tz03,tz04,tz05,tz06,tz07,tz08,tz09,tz10,
|
|
$ tz11,tz12,tz13,tz14,tz15,tz16,tz17,tz18,tz19,tz20,tz21
|
|
common /com_tdhpl_tpv/
|
|
$ tv01,tv02,tv03,tv04,tv05,tv06,tv07,tv08,tv09,tv10,
|
|
$ tv11,tv12,tv13,tv14,tv15,tv16,tv17,tv18,tv19,tv20,tv21
|
|
common /com_tdhpl_tpu/
|
|
$ tu01,tu02,tu03,tu04,tu05,tu06,tu07,tu08,tu09,tu10,
|
|
$ tu11,tu12,tu13,tu14,tu15,tu16,tu17,tu18,tu19,tu20,tu21
|
|
common /com_tdhpl_zm/
|
|
$ zm01,zm02,zm03,zm04,zm05,zm06,zm07,zm08,zm09,zm10,
|
|
$ zm11,zm12,zm13,zm14,zm15,zm16,zm17,zm18,zm19,zm20,zm21
|
|
common /com_tdhpl_s/
|
|
$ s01,s02,s03,s04,s05,s06,s07,s08,s09,s10,
|
|
$ s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22
|
|
common /com_tdhpl_rtdhpl/
|
|
$ r01,r02,r03,r04,r05,r06,r07,r08,r09,r10,
|
|
$ r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22
|
|
common /com_tdhpl_b/
|
|
$ b01,b02,b03,b04,b05,b06,b07,b08,b09,b10,
|
|
$ b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22
|
|
!$omp threadprivate(/com_tdhpl_s/,/com_tdhpl_rtdhpl/,/com_tdhpl_b/,/com_tdhpl_tpz/)
|
|
!$omp threadprivate(/com_tdhpl_tpv/,/com_tdhpl_tpu/,/com_tdhpl_zm/)
|
|
|
|
zm01 = 1d0-z
|
|
zm02 = zm01*zm01
|
|
zm03 = zm01*zm02
|
|
zm04 = zm01*zm03
|
|
zm05 = zm01*zm04
|
|
zm06 = zm01*zm05
|
|
zm07 = zm01*zm06
|
|
zm08 = zm01*zm07
|
|
zm09 = zm01*zm08
|
|
zm10 = zm01*zm09
|
|
zm11 = zm01*zm10
|
|
zm12 = zm01*zm11
|
|
zm13 = zm01*zm12
|
|
zm14 = zm01*zm13
|
|
zm15 = zm01*zm14
|
|
zm16 = zm01*zm15
|
|
zm17 = zm01*zm16
|
|
zm18 = zm01*zm17
|
|
zm19 = zm01*zm18
|
|
zm20 = zm01*zm19
|
|
zm21 = zm01*zm20
|
|
|
|
tz01 = 2d0*z-1d0
|
|
tz02 = 2d0*tz01*tz01 - 1d0
|
|
tz03 = 2d0*tz01*tz02 - tz01
|
|
tz04 = 2d0*tz01*tz03 - tz02
|
|
tz05 = 2d0*tz01*tz04 - tz03
|
|
tz06 = 2d0*tz01*tz05 - tz04
|
|
tz07 = 2d0*tz01*tz06 - tz05
|
|
tz08 = 2d0*tz01*tz07 - tz06
|
|
tz09 = 2d0*tz01*tz08 - tz07
|
|
tz10 = 2d0*tz01*tz09 - tz08
|
|
tz11 = 2d0*tz01*tz10 - tz09
|
|
tz12 = 2d0*tz01*tz11 - tz10
|
|
tz13 = 2d0*tz01*tz12 - tz11
|
|
tz14 = 2d0*tz01*tz13 - tz12
|
|
tz15 = 2d0*tz01*tz14 - tz13
|
|
tz16 = 2d0*tz01*tz15 - tz14
|
|
tz17 = 2d0*tz01*tz16 - tz15
|
|
tz18 = 2d0*tz01*tz17 - tz16
|
|
tz19 = 2d0*tz01*tz18 - tz17
|
|
tz20 = 2d0*tz01*tz19 - tz18
|
|
tz21 = 2d0*tz01*tz20 - tz19
|
|
|
|
u = -4d0/3d0*dlogone(-z)
|
|
v = 4d0/3d0*dlogone(z)
|
|
|
|
tu01 = 2d0*u-1d0
|
|
tu02 = 2d0*tu01*tu01 - 1d0
|
|
tu03 = 2d0*tu01*tu02 - tu01
|
|
tu04 = 2d0*tu01*tu03 - tu02
|
|
tu05 = 2d0*tu01*tu04 - tu03
|
|
tu06 = 2d0*tu01*tu05 - tu04
|
|
tu07 = 2d0*tu01*tu06 - tu05
|
|
tu08 = 2d0*tu01*tu07 - tu06
|
|
tu09 = 2d0*tu01*tu08 - tu07
|
|
tu10 = 2d0*tu01*tu09 - tu08
|
|
tu11 = 2d0*tu01*tu10 - tu09
|
|
tu12 = 2d0*tu01*tu11 - tu10
|
|
tu13 = 2d0*tu01*tu12 - tu11
|
|
tu14 = 2d0*tu01*tu13 - tu12
|
|
tu15 = 2d0*tu01*tu14 - tu13
|
|
tu16 = 2d0*tu01*tu15 - tu14
|
|
tu17 = 2d0*tu01*tu16 - tu15
|
|
tu18 = 2d0*tu01*tu17 - tu16
|
|
tu19 = 2d0*tu01*tu18 - tu17
|
|
tu20 = 2d0*tu01*tu19 - tu18
|
|
tu21 = 2d0*tu01*tu20 - tu19
|
|
|
|
tv01 = 2d0*v-1d0
|
|
tv02 = 2d0*tv01*tv01 - 1d0
|
|
tv03 = 2d0*tv01*tv02 - tv01
|
|
tv04 = 2d0*tv01*tv03 - tv02
|
|
tv05 = 2d0*tv01*tv04 - tv03
|
|
tv06 = 2d0*tv01*tv05 - tv04
|
|
tv07 = 2d0*tv01*tv06 - tv05
|
|
tv08 = 2d0*tv01*tv07 - tv06
|
|
tv09 = 2d0*tv01*tv08 - tv07
|
|
tv10 = 2d0*tv01*tv09 - tv08
|
|
tv11 = 2d0*tv01*tv10 - tv09
|
|
tv12 = 2d0*tv01*tv11 - tv10
|
|
tv13 = 2d0*tv01*tv12 - tv11
|
|
tv14 = 2d0*tv01*tv13 - tv12
|
|
tv15 = 2d0*tv01*tv14 - tv13
|
|
tv16 = 2d0*tv01*tv15 - tv14
|
|
tv17 = 2d0*tv01*tv16 - tv15
|
|
tv18 = 2d0*tv01*tv17 - tv16
|
|
tv19 = 2d0*tv01*tv18 - tv17
|
|
tv20 = 2d0*tv01*tv19 - tv18
|
|
tv21 = 2d0*tv01*tv20 - tv19
|
|
|
|
s01 = -4d0/3d0*dlogone(-y/(1d0-z))
|
|
b01 = s01/z
|
|
r01 = -4d0/3d0*dlogone(-y)
|
|
|
|
s02 = s01*s01
|
|
s03 = s01*s02
|
|
s04 = s01*s03
|
|
s05 = s01*s04
|
|
s06 = s01*s05
|
|
s07 = s01*s06
|
|
s08 = s01*s07
|
|
s09 = s01*s08
|
|
s10 = s01*s09
|
|
s11 = s01*s10
|
|
s12 = s01*s11
|
|
s13 = s01*s12
|
|
s14 = s01*s13
|
|
s15 = s01*s14
|
|
s16 = s01*s15
|
|
s17 = s01*s16
|
|
s18 = s01*s17
|
|
s19 = s01*s18
|
|
s20 = s01*s19
|
|
s21 = s01*s20
|
|
s22 = s01*s21
|
|
|
|
r02 = r01*r01
|
|
r03 = r01*r02
|
|
r04 = r01*r03
|
|
r05 = r01*r04
|
|
r06 = r01*r05
|
|
r07 = r01*r06
|
|
r08 = r01*r07
|
|
r09 = r01*r08
|
|
r10 = r01*r09
|
|
r11 = r01*r10
|
|
r12 = r01*r11
|
|
r13 = r01*r12
|
|
r14 = r01*r13
|
|
r15 = r01*r14
|
|
r16 = r01*r15
|
|
r17 = r01*r16
|
|
r18 = r01*r17
|
|
r19 = r01*r18
|
|
r20 = r01*r19
|
|
r21 = r01*r20
|
|
r22 = r01*r21
|
|
|
|
b02 = b01*b01
|
|
b03 = b01*b02
|
|
b04 = b01*b03
|
|
b05 = b01*b04
|
|
b06 = b01*b05
|
|
b07 = b01*b06
|
|
b08 = b01*b07
|
|
b09 = b01*b08
|
|
b10 = b01*b09
|
|
b11 = b01*b10
|
|
b12 = b01*b11
|
|
b13 = b01*b12
|
|
b14 = b01*b13
|
|
b15 = b01*b14
|
|
b16 = b01*b15
|
|
b17 = b01*b16
|
|
b18 = b01*b17
|
|
b19 = b01*b18
|
|
b20 = b01*b19
|
|
b21 = b01*b20
|
|
b22 = b01*b21
|
|
|
|
return
|
|
end
|