You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

37 lines
1.6 KiB

\newpage
\topheading{Jet-vetoed cross sections}
\label{jetvetosec}
The jet veto scale $p_T^{{\rm veto}}$ can induce large logarithms
if it is smaller than the hard process scale $Q$, which then mandates
resummation.
We consider processes where jets have been defined using
sequential recombination jet algorithms \cite{Salam:2010nqg} with distance measure
\begin{equation}\label{jetdef}
d_{ij} = \mbox{min}(k_{Ti}^{2n},k_{Tj}^{2n})\,
\frac{\Delta y_{ij}^2+\Delta\phi_{ij}^2}{R^2} \,, \qquad
d_{iB} = k_{Ti}^{2n} \,,
\end{equation}
where the choice $n=-1$ is the anti-$k_T$ algorithm \cite{Cacciari:2008gp},
$n=0$ is the Cambridge-Aachen algorithm \cite{Dokshitzer:1997in,Wobisch:1998wt},
and $n=1$ is the $k_T$ algorithm \cite{Catani:1993hr,Ellis:1993tq}.
$k_{Ti}$ denotes the transverse momentum of (pseudo-)particle $i$ with respect to the beam
direction,
and $\Delta y_{ij}$ and $\Delta\phi_{ij}$ are the rapidity and azimuthal angle differences of
(pseudo-)particles $i$ and $j$.
\midheading{Benchmark results for jet-vetoed cross sections}
Results for benchmark cross sections for a variety of single-boson processes
taken from ref.~\cite{CENS} are shown in Tables~\ref{table:jetveto_H}--\ref{table:jetveto_Z}
and for diboson processes in
Tables~\ref{table:jetveto_WW}--\ref{table:jetveto_ZZ}.
The input files are linked in the tables.
The uncertainties indicated in these tables
represent the numerical integration (Monte Carlo) uncertainty.
\input{sections/jetveto_H.tex}
\input{sections/jetveto_W.tex}
\input{sections/jetveto_Z.tex}
\input{sections/jetveto_WW.tex}
\input{sections/jetveto_WZ-atlas.tex}
\input{sections/jetveto_ZZ.tex}