You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
9.7 KiB
250 lines
9.7 KiB
\topheading{Input file configuration}
|
|
\midheading{Run-time input file parameters}
|
|
|
|
MCFM execution is performed in the {\tt Bin/} directory,
|
|
with syntax:
|
|
\begin{center}
|
|
{\tt mcfm }{\it input.ini}
|
|
\end{center}
|
|
If no command line options are given, then MCFM will default
|
|
to using the file {\tt input.ini} in the current directory for
|
|
choosing options. The \texttt{input.ini} file can be in any directory and
|
|
then the first argument to \texttt{mcfm} should be the location
|
|
of the file. Furthermore, one can overwrite or append single
|
|
configuration options with additional parameters like:
|
|
\begin{center}
|
|
\texttt{./mcfm benchmark/input.ini -general\%part=nlo -lhapdf\%dopdferrors=.true.}
|
|
\end{center}
|
|
Here specifying a parameter uses a single dash, then the section name as in the input file (see below), followed
|
|
by a percent sign, followed by the option name, followed by an equal sign and the actual value of the setting.
|
|
|
|
All default settings in the input file are explained below, as well as further optional parameters.
|
|
The top level setting \texttt{mcfm\_version} specifies the input file version number and it must match the version of
|
|
the code being used.
|
|
|
|
The general structure of a fixed-order calculation up to NNLO is as follows:
|
|
\begin{equation}
|
|
\sigma = \sigma_0 + \Delta\sigma_1 + \Delta\sigma_2 \,,
|
|
\end{equation}
|
|
where $\Delta\sigma_k$ is of order $\alpha_s^k$ with respect to the leading
|
|
order cross section $\sigma_0$, thus representing the
|
|
N$^k$LO contribution to the cross section.
|
|
When performing the NLO calculation using dipole subtraction
|
|
its contribution to the cross section can be decomposed as,
|
|
\begin{equation}
|
|
\Delta\sigma_1 = \Delta\sigma_1^v + \Delta\sigma_1^r \,.
|
|
\end{equation}
|
|
$\Delta\sigma_1^v$ includes virtual (loop) contributions, as well
|
|
as counterterms that render them finite.
|
|
$\Delta\sigma_1^r$ includes contributions from diagrams
|
|
involving real parton emission, again with counterterms to make them finite.
|
|
Only the sum of $\Delta\sigma_1^v$ and $\Delta\sigma_1^v$ is physical.
|
|
|
|
This contribution can also be computed using a slicing method with the
|
|
corresponding decomposition,
|
|
\begin{equation}
|
|
\Delta\sigma_1^a = \Delta\sigma_1^{a,<} + \Delta\sigma_1^{a, >} \,.
|
|
\end{equation}
|
|
$a$ labels the slicing resolution variable, which in MCFM can be either
|
|
0-jettiness, $q_T$ (of a color-singlet system) or $p_T^{j_1}$ (lead jet $p_T$)
|
|
(thus corresponding to a jet veto).
|
|
$\Delta\sigma_1^{a,<}$ is termed the below-cut slicing contribution which is
|
|
computed by the means of a factorization theorem and includes loop contributions.
|
|
$\Delta\sigma_1^{a,>}$ is the above-cut contribution containing radiation of
|
|
an additional parton.
|
|
Only the sum $\Delta\sigma_1^a$ is physical and contains a dependence on
|
|
the slicing resolution variable $a_{\text{cut}}$ that tends to zero as
|
|
$a_{\text{cut}} \to 0$
|
|
|
|
At NNLO only slicing calculations are available. The decomposition is,
|
|
\begin{equation}
|
|
\Delta\sigma_2^a = \Delta\sigma_2^{a,<} + \Delta\sigma_2^{a, v>} + \Delta\sigma_2^{a, r>} \,.
|
|
\end{equation}
|
|
$\Delta\sigma_2^{a,<}$ is the below-cut slicing contribution containing 2-loop
|
|
contributions.
|
|
$\Delta\sigma_1^{a, v>}$ is the above-cut contribution containing loop corrections
|
|
to radiation of an additional parton.
|
|
$\Delta\sigma_1^{a, r>}$ is the above-cut contribution representing
|
|
radiation of up to two additional partons.
|
|
Only the sum $\Delta\sigma_2^a$ is physical and contains a dependence on
|
|
the slicing resolution variable $a_{\text{cut}}$ that tends to zero as
|
|
$a_{\text{cut}} \to 0$
|
|
|
|
The type of computation that is performed depends on the parameter
|
|
\texttt{part} in the \texttt{general} section.
|
|
The list of possible values,
|
|
and the associated meaning, is shown in Tables~\ref{tab:partchoicesfo}
|
|
and~\ref{tab:partchoicesresum}. They can also be listed by
|
|
setting \texttt{part} equal to \texttt{help in the input file}.
|
|
|
|
|
|
\begin{longtable}{p{4.5cm}p{9.0cm}}
|
|
\caption{Possible values for the parameter \texttt{part} that correspond to
|
|
performing a fixed-order calculation. \label{tab:partchoicesfo}} \\
|
|
\hline
|
|
\texttt{part} & description\\
|
|
\hline
|
|
{\tt lo}/{\tt lord} &
|
|
$\sigma_0$
|
|
\\
|
|
{\tt virt} &
|
|
$\Delta\sigma_1^v$
|
|
\\
|
|
{\tt real} &
|
|
$\Delta\sigma_1^r$
|
|
\\
|
|
{\tt nlocoeff}/{\tt totacoeff} &
|
|
$\Delta\sigma_1$
|
|
\\
|
|
{\tt nlo}/{\tt tota} &
|
|
$\sigma_0+\Delta\sigma_1$. For photon processes that include fragmentation,
|
|
{\tt nlo} also includes the calculation of the fragmentation ({\tt frag})
|
|
contributions.
|
|
\\
|
|
{\tt frag} &
|
|
Processes 280, 285, 290, 295, 300-302, 305-307, 820-823 only, see sections~\ref{subsec:gamgam},
|
|
\ref{subsec:wgamma} and
|
|
\ref{subsec:zgamma} below.
|
|
\\
|
|
{\tt nlodk}/{\tt todk} &
|
|
Processes 114, 161, 166, 171, 176, 181, 186, 141, 146, 149, 233, 238, 501, 511 only, see
|
|
sections~\ref{subsec:stop} and
|
|
\ref{subsec:wt} below.
|
|
\\
|
|
{\tt snloR} & $\Delta\sigma_1^{a,>}$
|
|
\\
|
|
{\tt snloV} & $\Delta\sigma_1^{a,<}$
|
|
\\
|
|
{\tt snlocoeff}/{\tt scetnlocoeff} & $\Delta\sigma_1^a$
|
|
\\
|
|
{\tt snlo}/{\tt scetnlo} & $\sigma_0 + \Delta\sigma_1^a$
|
|
\\
|
|
{\tt nnloVVcoeff} & $\Delta\sigma_2^{a,<}$
|
|
\\
|
|
{\tt nnloRVcoeff} & $\Delta\sigma_2^{a,v>}$
|
|
\\
|
|
{\tt nnloRRcoeff} & $\Delta\sigma_2^{a,r>}$
|
|
\\
|
|
{\tt nnloVV} & $\Delta\sigma_1^{a,<} + \Delta\sigma_2^{a,<}$
|
|
\\
|
|
{\tt nnloRV} & $\Delta\sigma_1^{a,>} + \Delta\sigma_2^{a,v>}$
|
|
\\
|
|
{\tt nnloRR} & $\Delta\sigma_2^{a,r>}$
|
|
\\
|
|
{\tt nnlocoeff} & $\Delta\sigma_2^{a}$
|
|
\\
|
|
{\tt nnlo} & $\sigma_0 + \Delta\sigma_1 + \Delta\sigma_2^{a}$
|
|
\end{longtable}
|
|
|
|
\begin{longtable}{p{4.5cm}p{9.0cm}}
|
|
\caption{Possible values for the parameter \texttt{part} that correspond to
|
|
performing a calculation including large-log resummation. \label{tab:partchoicesresum}} \\
|
|
\hline
|
|
\texttt{part} & description\\
|
|
\hline
|
|
{\tt resLO} & NLL resummed and matched
|
|
\\
|
|
{\tt resonlyLO} & NLL resummed only
|
|
\\
|
|
{\tt resonlyLOp} & NLLp resummed only
|
|
\\
|
|
{\tt resexpNLO} & NNLL resummed expanded to NLO
|
|
\\
|
|
{\tt resonlyNLO} & NNLL resummed
|
|
\\
|
|
{\tt resaboveNLO} & fixed-order matching to NLO
|
|
\\
|
|
{\tt resmatchcorrNLO} & matching corrections at NLO
|
|
\\
|
|
{\tt resonlyNLOp} & NNLLp resummed
|
|
\\
|
|
{\tt resexpNNLO} & N$^3$LL resummed expanded to NNLO
|
|
\\
|
|
{\tt resonlyNNLO} & N$^3$LL resummed
|
|
\\
|
|
{\tt resaboveNNLO} & fixed-order matching to NLO
|
|
\\
|
|
{\tt resmatchcorrNNLO} & matching corrections at NLO
|
|
\\
|
|
{\tt resLOp} & NLLp resummed and matched
|
|
\\
|
|
{\tt resNLO} & NNLL resummed, matched to NLO
|
|
\\
|
|
{\tt resNLOp} & N$^3$LL resummed, matched to NLO
|
|
\\
|
|
{\tt resNNLO} & N$^3$LL resummed, matched to NNLO
|
|
\\
|
|
{\tt resNNLOp} & N$^3$LLp resummed, matched to NNLO
|
|
\\
|
|
{\tt resonlyNNLOp} & N$^3$LLp resummed
|
|
\end{longtable}
|
|
|
|
\bottomheading{General}
|
|
\input{sections/table_general.tex}
|
|
\bottomheading{Resummation}
|
|
\input{sections/table_resummation.tex}
|
|
\bottomheading{NNLO}
|
|
\input{sections/table_nnlo.tex}
|
|
\bottomheading{PDFs}
|
|
\input{sections/table_pdf.tex}
|
|
\bottomheading{LHAPDF}
|
|
\input{sections/table_lhapdf.tex}
|
|
\bottomheading{Scales}
|
|
\input{sections/table_scales.tex}
|
|
\begin{table}
|
|
\begin{center}
|
|
\begin{longtable}{|l|l|l|}
|
|
\hline
|
|
{\tt dynamic scale} & $\mu_0^2$ & comments\\
|
|
\hline
|
|
{\tt m(34)} & $(p_3+p_4)^2$ & \\
|
|
{\tt m(345)} & $(p_3+p_4+p_5)^2$ & \\
|
|
{\tt m(3456)} & $(p_3+p_4+p_5+p_6)^2$ & \\
|
|
{\tt sqrt(M\pow 2+pt34\pow 2)} & $M^2 + (\vec{p_T}_3 + \vec{p_T}_4)^2$ & $M=$~mass of particle 3+4 \\
|
|
{\tt sqrt(M\pow 2+pt345\pow 2)} & $M^2 + (\vec{p_T}_3 + \vec{p_T}_4 + \vec{p_T}_5)^2$ & $M=$~mass of
|
|
particle 3+4+5 \\
|
|
{\tt sqrt(M\pow 2+pt5\pow 2)} & $M^2 + \vec{p_T}_5^2$ & $M=$~mass of particle 3+4 \\
|
|
{\tt sqrt(M\pow 2+ptj1\pow 2)} & $M^2 + \vec{p_T}_{j_1}^2$ & $M=$~mass(3+4), $j_1=$ leading $p_T$ jet \\
|
|
{\tt pt(photon)} & $\vec{p_T}_\gamma^2$ & \\
|
|
{\tt pt(j1)} & $\vec{p_T}_{j_1}^2$ & \\
|
|
{\tt HT} & $\sum_{i=1}^n {p_T}_i$ & $n$ particles (partons, not jets) \\
|
|
\hline
|
|
\hline\end{longtable}
|
|
\end{center}
|
|
\caption{Choices of the input parameter {\tt dynamicscale} that result in an event-by-event
|
|
calculation of all relevant scales using the given reference scale-squared $\mu_0^2$.
|
|
\label{tab:dynamicscales}}
|
|
\end{table}
|
|
\bottomheading{Masses}
|
|
\input{sections/table_masses.tex}
|
|
\bottomheading{Basic jets}
|
|
\label{basicjets}
|
|
\input{sections/table_basicjets.tex}
|
|
\bottomheading{Mass cuts}
|
|
\label{masscuts}
|
|
\input{sections/table_masscuts.tex}
|
|
\bottomheading{Cuts}
|
|
\input{sections/table_cuts1.tex}
|
|
\bottomheading{Cuts (continued)}
|
|
\input{sections/table_cuts2.tex}
|
|
\bottomheading{Photon}
|
|
\input{sections/table_photon.tex}
|
|
\bottomheading{Histograms}
|
|
\input{sections/table_histogram.tex}
|
|
\bottomheading{Imtegration}
|
|
\input{sections/table_integration.tex}
|
|
\midheading{Process specific options}
|
|
\bottomheading{Single Top}
|
|
\input{sections/table_singletop.tex}
|
|
\bottomheading{Anomalous $W/Z$ couplings}
|
|
\input{sections/table_anom_wz.tex}
|
|
\bottomheading{$W/Z$+2 jets}
|
|
\input{sections/table_wz2jet.tex}
|
|
\bottomheading{H jetmass}
|
|
\input{sections/table_hjetmass.tex}
|
|
\bottomheading{Anomalous $H$ couplings}
|
|
\input{sections/table_anom_higgs.tex}
|
|
\bottomheading{Extra}
|
|
\input{sections/table_extra.tex}
|
|
\bottomheading{Dipoles}
|
|
\input{sections/table_dipoles.tex}
|