c ------------------------------------------------ double complex function HPL2ar1(n1,n2,x) implicit none integer n1,n2,j,bcflag double complex x,ris,myi,zp,llzp double precision pi, zeta2,ll2,xre pi=3.1415926535897932385D0 zeta2=pi**2/6d0 myi = dcmplx(0d0,1d0) ll2 = dlog(2d0) bcflag = 0 j=1+(n2+1)+(n1+1)*3 ris = dcmplx(0d0,0d0) c--- +i*epsilon to get branch cuts right --- if (dimag(x).eq.0d0) then x = x + dcmplx(0d0,1d-60) bcflag = 1 endif c--- select case(j) case(1) !-1-1 zp = 1d0-x ris = -((zp*ll2)/2d0) + (ll2**2)/2d0 + zp** & 5*(5d0/384d0 - (ll2)/160d0) + zp**3*(1d0/16d0 - (ll2)/2 & 4d0) + zp**6*(137d0/23040d0 - (ll2)/384d0) + zp**4*(11d & 0/384d0 - (ll2)/64d0) + zp**2*(1d0/8d0 - (ll2)/8d0) case(2) !-10 zp = 1d0-x ris = -((pi**2)/12d0) + (zp**2)/4d0 + (zp** & 3)/6d0 + (5d0*zp**4)/48d0 + (zp**5)/15d0 + (2d0*zp**6)/ & 45d0 case(3) !-11 zp = 1d0-x llzp = log(zp) ris = (pi**2)/12d0 - (ll2**2)/2d0 + zp**5*( & -(1d0/800d0) + (llzp)/160d0) + zp**3*(-(1d0/72d0) + (ll & zp)/24d0) + zp*(-(1d0/2d0) + (llzp)/2d0) + zp**6*(-(1d0 & /2304d0) + (llzp)/384d0) + zp**4*(-(1d0/256d0) + (llzp) & /64d0) + zp**2*(-(1d0/16d0) + (llzp)/8d0) case(4) !0-1 zp = 1d0-x ris = (pi**2)/12d0 - zp*ll2 + zp**2*(1d0/4d & 0 - (ll2)/2d0) + zp**3*(5d0/24d0 - (ll2)/3d0) + zp**4*( & 1d0/6d0 - (ll2)/4d0) + zp**5*(131d0/960d0 - (ll2)/5d0) & + zp**6*(661d0/5760d0 - (ll2)/6d0) case(5) !00 zp = 1d0-x ris = (zp**2)/2d0 + (zp**3)/2d0 + (11d0*zp* & *4)/24d0 + (5d0*zp**5)/12d0 + (137d0*zp**6)/360d0 case(6) !01 zp = 1d0-x llzp = log(zp) ris = (pi**2)/6d0 + zp*(-1 + llzp) + zp**2* & (-(1d0/4d0) + (llzp)/2d0) + zp**3*(-(1d0/9d0) + (llzp)/ & 3d0) + zp**4*(-(1d0/16d0) + (llzp)/4d0) + zp**5*(-(1d0/ & 25d0) + (llzp)/5d0) + zp**6*(-(1d0/36d0) + (llzp)/6d0) case(7) !1-1 zp = 1d0-x llzp = log(zp) ris = -((pi**2)/12d0) + (zp)/2d0 + (zp**2)/ & 16d0 + (zp**3)/72d0 + (zp**4)/256d0 + (zp**5)/800d0 + ( & zp**6)/2304d0 + (ll2**2)/2d0 - ll2*llzp case(8) !10 zp = 1d0-x ris = -((pi**2)/6d0) + zp + (zp**2)/4d0 + ( & zp**3)/9d0 + (zp**4)/16d0 + (zp**5)/25d0 + (zp**6)/36d0 case(9) !11 zp = 1d0-x llzp = log(zp) ris = (llzp**2)/2d0 c End of expansions around x = +1 end select c --- set the imaginary part back to zero if it has been modified to c --- get the branch cuts right (and should be zero). if (bcflag.eq.1) then xre = dreal(x) if (n2.eq.0.and.xre.gt.0d0) then if (xre.lt.1d0) then ris = dcmplx(dreal(ris),0d0) endif c else if (n2.eq.1.and.xre.lt.1d0) then if (n1.ne.-1) then ris = dcmplx(dreal(ris),0d0) else if (xre.gt.-1d0) then ris = dcmplx(dreal(ris),0d0) endif c else if (n2.eq.-1.and.xre.gt.-1d0) then if (n1.ne.1) then ris = dcmplx(dreal(ris),0d0) else if (xre.lt.1d0) then ris = dcmplx(dreal(ris),0d0) endif endif endif HPL2ar1=ris return end function