\begin{longtable}{p{1.5cm}p{12cm}} \hline \multicolumn{1}{c}{{\textbf{Section} \texttt{resummation}}} & \multicolumn{1}{c}{{\textbf{Description}}} \\ \hline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{makegrid}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright If \texttt{.true.}, then MCFM performs the convolution required to produce beam functions from PDFs and saves the result as an LHAPDF grid file. The generated grid files are placed in the directory \texttt{gridoutpath} from LHAPDF grids in the directory \texttt{gridinpath}. After the grid generation MCFM stops and should be run subsequently with \texttt{makegrid = .false.} and \texttt{usegrid = .true.}. When \texttt{lhapdf\%dopdferrors=.true.} then also grids for the error sets are generated.\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{usegrid}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright \texttt{.true.} or \texttt{.false.} determines whether pregenerated LHAPDF interpolation grids should be used for the resummation beam functions. Setting \texttt{usegrid = .true.} is much more efficient, after a suitable run with \texttt{makegrid = .true.} (see above).\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{gridoutpath}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Output directory for LHAPDF grid files, for example \texttt{/home/tobias/local/share/LHAPDF/}\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{gridinpath}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Input directory for LHAPDF grid files, for example \texttt{/home/tobias/local/share/LHAPDF/}\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{res\_range}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Integration range of purely resummed part, for example \texttt{0.0 80.0} for \(q_T\) integration between 0 and 80 GeV.\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{resexp\_range}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Integration range of fixed-order expanded resummed part, for example \texttt{1.0 80.0} for \(q_T\) integration between 1 and 80 GeV.\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{fo\_cutoff}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Lower \(q_T\) cutoff $q_0$ for the fixed-order part. % see Eq.~\eqref{eq:matchingmod} below. Typically the value should agree with the lower range of \texttt{resexp\_range}.\strut \end{minipage}\tabularnewline \begin{minipage}[t]{0.24\columnwidth}\raggedright \texttt{transitionswitch}\strut \end{minipage} & \begin{minipage}[t]{0.71\columnwidth}\raggedright Parameter passed to the plotting routine to modify the transition function, see text.\strut \end{minipage}\tabularnewline \hline \end{longtable}