\newpage \topheading{Jet-vetoed cross sections} \label{jetvetosec} The jet veto scale $p_T^{{\rm veto}}$ can induce large logarithms if it is smaller than the hard process scale $Q$, which then mandates resummation. We consider processes where jets have been defined using sequential recombination jet algorithms \cite{Salam:2010nqg} with distance measure \begin{equation}\label{jetdef} d_{ij} = \mbox{min}(k_{Ti}^{2n},k_{Tj}^{2n})\, \frac{\Delta y_{ij}^2+\Delta\phi_{ij}^2}{R^2} \,, \qquad d_{iB} = k_{Ti}^{2n} \,, \end{equation} where the choice $n=-1$ is the anti-$k_T$ algorithm \cite{Cacciari:2008gp}, $n=0$ is the Cambridge-Aachen algorithm \cite{Dokshitzer:1997in,Wobisch:1998wt}, and $n=1$ is the $k_T$ algorithm \cite{Catani:1993hr,Ellis:1993tq}. $k_{Ti}$ denotes the transverse momentum of (pseudo-)particle $i$ with respect to the beam direction, and $\Delta y_{ij}$ and $\Delta\phi_{ij}$ are the rapidity and azimuthal angle differences of (pseudo-)particles $i$ and $j$. \midheading{Benchmark results for jet-vetoed cross sections} Results for benchmark cross sections for a variety of single-boson processes taken from ref.~\cite{CENS} are shown in Tables~\ref{table:jetveto_H}--\ref{table:jetveto_Z} and for diboson processes in Tables~\ref{table:jetveto_WW}--\ref{table:jetveto_ZZ}. The input files are linked in the tables. The uncertainties indicated in these tables represent the numerical integration (Monte Carlo) uncertainty. \input{sections/jetveto_H.tex} \input{sections/jetveto_W.tex} \input{sections/jetveto_Z.tex} \input{sections/jetveto_WW.tex} \input{sections/jetveto_WZ-atlas.tex} \input{sections/jetveto_ZZ.tex}