\topheading{Input file configuration} \midheading{Run-time input file parameters} MCFM execution is performed in the {\tt Bin/} directory, with syntax: \begin{center} {\tt mcfm }{\it input.ini} \end{center} If no command line options are given, then MCFM will default to using the file {\tt input.ini} in the current directory for choosing options. The \texttt{input.ini} file can be in any directory and then the first argument to \texttt{mcfm} should be the location of the file. Furthermore, one can overwrite or append single configuration options with additional parameters like: \begin{center} \texttt{./mcfm benchmark/input.ini -general\%part=nlo -lhapdf\%dopdferrors=.true.} \end{center} Here specifying a parameter uses a single dash, then the section name as in the input file (see below), followed by a percent sign, followed by the option name, followed by an equal sign and the actual value of the setting. All default settings in the input file are explained below, as well as further optional parameters. The top level setting \texttt{mcfm\_version} specifies the input file version number and it must match the version of the code being used. The general structure of a fixed-order calculation up to NNLO is as follows: \begin{equation} \sigma = \sigma_0 + \Delta\sigma_1 + \Delta\sigma_2 \,, \end{equation} where $\Delta\sigma_k$ is of order $\alpha_s^k$ with respect to the leading order cross section $\sigma_0$, thus representing the N$^k$LO contribution to the cross section. When performing the NLO calculation using dipole subtraction its contribution to the cross section can be decomposed as, \begin{equation} \Delta\sigma_1 = \Delta\sigma_1^v + \Delta\sigma_1^r \,. \end{equation} $\Delta\sigma_1^v$ includes virtual (loop) contributions, as well as counterterms that render them finite. $\Delta\sigma_1^r$ includes contributions from diagrams involving real parton emission, again with counterterms to make them finite. Only the sum of $\Delta\sigma_1^v$ and $\Delta\sigma_1^v$ is physical. This contribution can also be computed using a slicing method with the corresponding decomposition, \begin{equation} \Delta\sigma_1^a = \Delta\sigma_1^{a,<} + \Delta\sigma_1^{a, >} \,. \end{equation} $a$ labels the slicing resolution variable, which in MCFM can be either 0-jettiness, $q_T$ (of a color-singlet system) or $p_T^{j_1}$ (lead jet $p_T$) (thus corresponding to a jet veto). $\Delta\sigma_1^{a,<}$ is termed the below-cut slicing contribution which is computed by the means of a factorization theorem and includes loop contributions. $\Delta\sigma_1^{a,>}$ is the above-cut contribution containing radiation of an additional parton. Only the sum $\Delta\sigma_1^a$ is physical and contains a dependence on the slicing resolution variable $a_{\text{cut}}$ that tends to zero as $a_{\text{cut}} \to 0$ At NNLO only slicing calculations are available. The decomposition is, \begin{equation} \Delta\sigma_2^a = \Delta\sigma_2^{a,<} + \Delta\sigma_2^{a, v>} + \Delta\sigma_2^{a, r>} \,. \end{equation} $\Delta\sigma_2^{a,<}$ is the below-cut slicing contribution containing 2-loop contributions. $\Delta\sigma_1^{a, v>}$ is the above-cut contribution containing loop corrections to radiation of an additional parton. $\Delta\sigma_1^{a, r>}$ is the above-cut contribution representing radiation of up to two additional partons. Only the sum $\Delta\sigma_2^a$ is physical and contains a dependence on the slicing resolution variable $a_{\text{cut}}$ that tends to zero as $a_{\text{cut}} \to 0$ The type of computation that is performed depends on the parameter \texttt{part} in the \texttt{general} section. The list of possible values, and the associated meaning, is shown in Tables~\ref{tab:partchoicesfo} and~\ref{tab:partchoicesresum}. They can also be listed by setting \texttt{part} equal to \texttt{help in the input file}. \begin{longtable}{p{4.5cm}p{9.0cm}} \caption{Possible values for the parameter \texttt{part} that correspond to performing a fixed-order calculation. \label{tab:partchoicesfo}} \\ \hline \texttt{part} & description\\ \hline {\tt lo}/{\tt lord} & $\sigma_0$ \\ {\tt virt} & $\Delta\sigma_1^v$ \\ {\tt real} & $\Delta\sigma_1^r$ \\ {\tt nlocoeff}/{\tt totacoeff} & $\Delta\sigma_1$ \\ {\tt nlo}/{\tt tota} & $\sigma_0+\Delta\sigma_1$. For photon processes that include fragmentation, {\tt nlo} also includes the calculation of the fragmentation ({\tt frag}) contributions. \\ {\tt frag} & Processes 280, 285, 290, 295, 300-302, 305-307, 820-823 only, see sections~\ref{subsec:gamgam}, \ref{subsec:wgamma} and \ref{subsec:zgamma} below. \\ {\tt nlodk}/{\tt todk} & Processes 114, 161, 166, 171, 176, 181, 186, 141, 146, 149, 233, 238, 501, 511 only, see sections~\ref{subsec:stop} and \ref{subsec:wt} below. \\ {\tt snloR} & $\Delta\sigma_1^{a,>}$ \\ {\tt snloV} & $\Delta\sigma_1^{a,<}$ \\ {\tt snlocoeff}/{\tt scetnlocoeff} & $\Delta\sigma_1^a$ \\ {\tt snlo}/{\tt scetnlo} & $\sigma_0 + \Delta\sigma_1^a$ \\ {\tt nnloVVcoeff} & $\Delta\sigma_2^{a,<}$ \\ {\tt nnloRVcoeff} & $\Delta\sigma_2^{a,v>}$ \\ {\tt nnloRRcoeff} & $\Delta\sigma_2^{a,r>}$ \\ {\tt nnloVV} & $\Delta\sigma_1^{a,<} + \Delta\sigma_2^{a,<}$ \\ {\tt nnloRV} & $\Delta\sigma_1^{a,>} + \Delta\sigma_2^{a,v>}$ \\ {\tt nnloRR} & $\Delta\sigma_2^{a,r>}$ \\ {\tt nnlocoeff} & $\Delta\sigma_2^{a}$ \\ {\tt nnlo} & $\sigma_0 + \Delta\sigma_1 + \Delta\sigma_2^{a}$ \end{longtable} \begin{longtable}{p{4.5cm}p{9.0cm}} \caption{Possible values for the parameter \texttt{part} that correspond to performing a calculation including large-log resummation. \label{tab:partchoicesresum}} \\ \hline \texttt{part} & description\\ \hline {\tt resLO} & NLL resummed and matched \\ {\tt resonlyLO} & NLL resummed only \\ {\tt resonlyLOp} & NLLp resummed only \\ {\tt resexpNLO} & NNLL resummed expanded to NLO \\ {\tt resonlyNLO} & NNLL resummed \\ {\tt resaboveNLO} & fixed-order matching to NLO \\ {\tt resmatchcorrNLO} & matching corrections at NLO \\ {\tt resonlyNLOp} & NNLLp resummed \\ {\tt resexpNNLO} & N$^3$LL resummed expanded to NNLO \\ {\tt resonlyNNLO} & N$^3$LL resummed \\ {\tt resaboveNNLO} & fixed-order matching to NLO \\ {\tt resmatchcorrNNLO} & matching corrections at NLO \\ {\tt resLOp} & NLLp resummed and matched \\ {\tt resNLO} & NNLL resummed, matched to NLO \\ {\tt resNLOp} & N$^3$LL resummed, matched to NLO \\ {\tt resNNLO} & N$^3$LL resummed, matched to NNLO \\ {\tt resNNLOp} & N$^3$LLp resummed, matched to NNLO \\ {\tt resonlyNNLOp} & N$^3$LLp resummed \end{longtable} \bottomheading{General} \input{sections/table_general.tex} \bottomheading{Resummation} \input{sections/table_resummation.tex} \bottomheading{NNLO} \input{sections/table_nnlo.tex} \bottomheading{PDFs} \input{sections/table_pdf.tex} \bottomheading{LHAPDF} \input{sections/table_lhapdf.tex} \bottomheading{Scales} \input{sections/table_scales.tex} \begin{table} \begin{center} \begin{longtable}{|l|l|l|} \hline {\tt dynamic scale} & $\mu_0^2$ & comments\\ \hline {\tt m(34)} & $(p_3+p_4)^2$ & \\ {\tt m(345)} & $(p_3+p_4+p_5)^2$ & \\ {\tt m(3456)} & $(p_3+p_4+p_5+p_6)^2$ & \\ {\tt sqrt(M\pow 2+pt34\pow 2)} & $M^2 + (\vec{p_T}_3 + \vec{p_T}_4)^2$ & $M=$~mass of particle 3+4 \\ {\tt sqrt(M\pow 2+pt345\pow 2)} & $M^2 + (\vec{p_T}_3 + \vec{p_T}_4 + \vec{p_T}_5)^2$ & $M=$~mass of particle 3+4+5 \\ {\tt sqrt(M\pow 2+pt5\pow 2)} & $M^2 + \vec{p_T}_5^2$ & $M=$~mass of particle 3+4 \\ {\tt sqrt(M\pow 2+ptj1\pow 2)} & $M^2 + \vec{p_T}_{j_1}^2$ & $M=$~mass(3+4), $j_1=$ leading $p_T$ jet \\ {\tt pt(photon)} & $\vec{p_T}_\gamma^2$ & \\ {\tt pt(j1)} & $\vec{p_T}_{j_1}^2$ & \\ {\tt HT} & $\sum_{i=1}^n {p_T}_i$ & $n$ particles (partons, not jets) \\ \hline \hline\end{longtable} \end{center} \caption{Choices of the input parameter {\tt dynamicscale} that result in an event-by-event calculation of all relevant scales using the given reference scale-squared $\mu_0^2$. \label{tab:dynamicscales}} \end{table} \bottomheading{Masses} \input{sections/table_masses.tex} \bottomheading{Basic jets} \label{basicjets} \input{sections/table_basicjets.tex} \bottomheading{Mass cuts} \label{masscuts} \input{sections/table_masscuts.tex} \bottomheading{Cuts} \input{sections/table_cuts1.tex} \bottomheading{Cuts (continued)} \input{sections/table_cuts2.tex} \bottomheading{Photon} \input{sections/table_photon.tex} \bottomheading{Histograms} \input{sections/table_histogram.tex} \bottomheading{Imtegration} \input{sections/table_integration.tex} \midheading{Process specific options} \bottomheading{Single Top} \input{sections/table_singletop.tex} \bottomheading{Anomalous $W/Z$ couplings} \input{sections/table_anom_wz.tex} \bottomheading{$W/Z$+2 jets} \input{sections/table_wz2jet.tex} \bottomheading{H jetmass} \input{sections/table_hjetmass.tex} \bottomheading{Anomalous $H$ couplings} \input{sections/table_anom_higgs.tex} \bottomheading{Extra} \input{sections/table_extra.tex} \bottomheading{Dipoles} \input{sections/table_dipoles.tex}