\hypertarget{plotting-and-transition}{% \midheading{Plotting routine and transition function}\label{plotting-and-transition}} The following transition function is implemented for the example input files. For more details we refer to our publication. The fully matched cross-section is described in general by \includegraphics[width=0.9\textwidth]{./sections/Matching.png} %\begin{equation}\label{eq:matchingmod} % \; % \left.\frac{\mathrm{d}\sigma^{\text{N$^3$LL}}}{\mathrm{d}q_T}\right|_{\text{matched to \NNLO{}}} % = t(x) \left( \frac{\mathrm{d}\sigma^{\text{N$^3$LL}}}{\mathrm{d}q_T} + % \left.\Delta\sigma\right|_{q_T>q_0} \right) % + (1-t(x)) \frac{\mathrm{d}\sigma^\NNLO{}}{\mathrm{d}q_T}\, %\end{equation} using a transition function $t(x)$. We have implemented a transition function $t$ with $x=q_T^2/Q^2$ that smoothly switches between 1 and 0 like a sigmoid function. Following a choice in CuTe, we first define \includegraphics[width=0.9\textwidth]{./sections/sfunction.png} %\begin{equation} %s(x;l,r,u) = \left (1 + \exp\left(\log\left(\frac{1-u}{u}\right) \frac{x-m}{w}\right) \right )^{-1}\,,\quad %m = (r+l)/2\,,\quad w = (r-l)/2\,. %\end{equation} The function $s(x)$, parametrized by $l,r,u$, is defined to be $s(l)=1-u$ and $s(r)=u$. In terms of this sigmoid, our transition function $t(x; x^{\text{min}},x^{\text{max}},u)$, where $x=q_T^2/Q^2$, is then defined by \begin{equation}\label{eq:transition} t(x; x^{\text{min}},x^{\text{max}},u) = \left\{\begin{array}{lr} 1 , & \text{for } x < x^{\text{min}}\\ \frac{s(x; x^{\text{min}}, x^{\text{max}},u)} {s(x^{\text{min}}; x^{\text{min}}, x^{\text{max}},u)}, & \text{otherwise} \end{array}\right\}\,. \end{equation} This ensures that below $x^{\text{min}}=(q_T^{\text{min}}/Q)^2$ only the naively matched result is used, and at $x^{\text{max}}$ for small $u\ll1$ the transition function is approximately $u$. In practice it makes sense to set the transition function to zero below a small threshold like $10^{-3}$ without a noticeable discontinuity. This has the advantage that the deteriorating resummation and matching corrections do not impact the region of large $q_T$ at all. Our example plotting routines use $x^{\text{min}}=0.001$, and $u=0.001$, and the parameter $x^{\text{max}}$ corresponds to the value of \texttt{transitionswitch} set in the input file. The transition function can be changed or completely replaced by just modifying the plotting routines. The following figure illustrates this transition function. \begin{figure}[t!] \centering \includegraphics[width=0.8\textwidth]{transition.pdf} \caption{The transition function defined in eq.~\eqref{eq:transition} for different values of the parameter $x^{\text{max}}$ which determines the position of the transition. The $x$-axis is displayed on a square-root scale to guide the eye on the quadratic $q_T$-dependence.} \label{fig:transition} \end{figure}