\section{Benchmark results at NNLO } \label{sec:NNLO} \label{sec:benchmark} We perform benchmark calculations with the default set of EW parameters and for the LHC operating at $\sqrt s = 14$~TeV. We allow all vector bosons to be off-shell ({\tt zerowidth} is {\tt .false.}) and include their decays ({\tt removebr} is {\tt .false.}). For each Higgs boson process we consider the decay $H \to \tau^- \tau^+$. For parameters that are set in the input file we use, \begin{eqnarray} m_H = 125~\mbox{GeV} \,, \quad m_t = 173.3~\mbox{GeV} \,, \quad m_b = 4.66~\mbox{GeV} \,, \end{eqnarray} and we use the NNLO CT14 pdf set (i.e. {\tt pdlabel} is {\tt CT14.NN}) with $\mu_F = \mu_R = Q^2$ (i.e. we set {\tt dynamicscale} equal to either {\tt m(34)} or {\tt m(345)} or {\tt m(3456)}, as appropriate). Our generic set of cuts is, \begin{eqnarray} && p_T(\mbox{lepton}) > 20~\mbox{GeV} \,, \quad |\eta(\mbox{lepton})| < 2.4 \,, \quad \nonumber \\ && p_T(\mbox{photon 1}) > 40~\mbox{GeV} \,, \quad p_T(\mbox{photon 2}) > 25~\mbox{GeV} \,, \quad \nonumber \\ &&|\eta(\mbox{photon})| < 2.5 \,, \quad \Delta R(\mbox{photon 1, photon 2}) > 0.4 \,, \quad \nonumber \\ && E_T^{\mbox{miss}} > 30~\mbox{GeV} \,, \quad \Delta R(\text{photon}, \text{lepton}) > 0.3 \quad \end{eqnarray} For $Z$ production we also impose a minimum $Z^*$ virtuality ({\tt m34min}) of $40$~GeV. Our benchmark results are shown in Table~\ref{NNLObenchmarks} and were performed on an Intel Xeon X5650 @ 2.67GHz system with 16 nodes of 12 cores each. MCFM was compiled with the Intel compiler and default optimizations as well as the default MCFM setup including all pre-defined histograms. The NNLO \CPU{} time includes the time necessary for the NLO calculation. The numbers for the NLO and NNLO results were obtained independently. By tweaking the initial number of calls or the number of iterations per batch it is certainly possible to optimize the runtimes. While the numerical precision is not yet good sufficient for most of the fitted corrections to significantly improve the results, the fits are highly reliable and correctly estimate the residual $\taucut$ dependence. \begin{table}[] \caption{Benchmark cross-sections at NLO and NNLO, using the parameters and settings described in the text. All numbers are obtained for a numerical 0.2\% precision goal. All NLO numbers are obtained within minutes on a desktop system, except for $Z\gamma$, which requires at the order of 20-30 minutes. The NNLO \CPU{} time includes the time for the NLO calculation.} \label{NNLObenchmarks} \vspace{0.5em} \begin{tabular}{@{}lcccccc@{}} \hline Process & \texttt{nproc} & $\taucut$ [GeV] & $\sigma^\text{NLO}$ & $\sigma^\text{NNLO}$ & fitted corr. & CPU time [h] \\ \hline $W^+$ & 1 & $6\cdot10^{-3}\, m_W$ & \SI{4.221}{nb} & \SI{4.209\pm0.005}{nb} & \SI{-27\pm15}{pb} & 7.6 \\ $W^-$ & 6 & $6\cdot10^{-3}\, m_W$ & \SI{3.315}{nb} & \SI{3.275\pm0.004}{nb} & \SI{-25\pm10}{pb} & 7.8 \\ $Z$ & 31 & $6\cdot10^{-3}\, m_Z$ & \SI{885.3}{pb} & \SI{875.8\pm0.9}{nb} & \SI{-3.5\pm 2}{fb} & 13.0 \\ $H$ & 112 & $4\cdot10^{-3}\, m_H$ & \SI{1.396}{pb} & \SI{1.872\pm0.002}{pb} & \SI{7\pm6}{fb} & 9.7 \\ $\gamma\gamma$ & 285 & $1\cdot10^{-4}\, m_{\gamma\gamma}$ & \SI{27.91}{pb} & \SI{43.54\pm0.08}{pb} & \SI{0.36\pm0.10}{pb} & 83.2 \\ $W^+ H$ & 91 & $3\cdot10^{-3}\, m_{W^+ H}$ & \SI{2.204}{fb} & \SI{2.262\pm0.004}{fb} & \SI{0.002\pm0.008}{fb} & 16.0 \\ $W^- H$ & 96 & $3\cdot10^{-3}\, m_{W^- H}$ & \SI{1.491}{fb} & \SI{1.526\pm0.003}{fb} & \SI{-0.005\pm0.007}{fb} & 13.0 \\ $Z H$ & 110 & $3\cdot10^{-3}\, m_{Z H}$ & \SI{0.753}{fb} & \SI{0.842\pm0.001}{fb} & \SI{-0.005\pm0.003}{fb} & 12.5 \\ $Z \gamma$ & 300 & $3\cdot10^{-4}\, m_{Z \gamma}$ & \SI{434}{fb} & \SI{525.5\pm1.0}{fb} & \SI{4.5\pm1.7}{fb} & 202.5 \\ \hline \end{tabular} \end{table} %%%\begin{table} %%%\begin{center} %%% \caption{Benchmark cross-sections at NLO and NNLO, using the parameters %%% and settings described in the text. $\delta\sigma^{MC}$ represents the uncertainty %%% from the integration, while $\delta\sigma^{pc}$ is an estimate of the %%% uncertainty due to neglected power corrections at NNLO.} %%% \label{NNLObenchmarks} %%% \vspace{0.5em} %%%\begin{tabular}{|l|l|l|l|} \hline %%%Process & {\tt nproc} & $\sigma_\mathrm{NLO} \pm \delta\sigma_\mathrm{NLO}^\mathrm{MC} $ & %%%$\sigma_\mathrm{NNLO} \pm %%%\delta\sigma_\mathrm{NNLO}^\mathrm{MC} \pm \delta\sigma_\mathrm{NNLO}^\mathrm{pc}$ \\ %%%\hline %%%$W^+$ & {\tt 1} & $4.220 \pm 0.002$ nb & $4.19 \pm 0.02 \pm 0.043$ nb\\ %%%$W^-$ & {\tt 6} & $3.315 \pm 0.001$ nb & $3.23 \pm 0.01 \pm 0.033$ nb\\ %%%$Z $ & {\tt 31} & $885.2 \pm 0.3$ pb & $878 \pm 3 \pm 9$ pb\\ %%%$H $ & {\tt 112} & $1.395 \pm 0.001$ pb & $1.865 \pm 0.004 \pm 0.019$ pb\\ %%%$\gamma\gamma $ & {\tt 285} & $27.94 \pm 0.01$ pb & $43.60 \pm 0.06 \pm 0.44$ pb\\ %%%$W^+H$ & {\tt 91} & $2.208 \pm 0.002$ fb & $2.268 \pm 0.007 \pm 0.023$ fb\\ %%%$W^-H$ & {\tt 96} & $1.494 \pm 0.001$ fb & $1.519 \pm 0.004 \pm 0.015$ fb\\ %%%$ZH$ & {\tt 110} & $0.7535 \pm 0.0004$ fb & $0.846 \pm 0.001 \pm 0.0085$ fb\\ %%%$Z\gamma$ & {\tt 300} & $959 \pm 8$ fb & $1268 \pm 22 $ fb \\ %%%\hline %%%\end{tabular} %%%\end{center} %%%\end{table}